cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276152 a(n) = {smallest prime not dividing n} times {greatest primorial number which divides n} = A053669(n) * A053589(n).

Original entry on oeis.org

2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 210, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 210, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 210, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2016

Keywords

Comments

a(n) with n odd must = 2 because 1 is the only odd primorial, thereby the only primorial dividing odd n, and 2 is the smallest prime not dividing odd n. - Michael De Vlieger, Aug 25 2016

Examples

			a(6) = 30 because the smallest nondivisor prime 6 = 5 and the smallest primorial dividing 6 is 6 itself. 5 * 6 = 30.
		

Crossrefs

Programs

  • Mathematica
    Table[If[n == 1, 2, Prime@If[! MemberQ[#, 0], Length@ # + 1, Position[#, 0][[1, 1]]] (Times @@ Prime@ Flatten@ Position[TakeWhile[#, # > 0 &], 1]) &@ Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@# -> 1 &, f]]@ FactorInteger@ n], {n, 120}] (* or *)
    Table[If[OddQ@ n, 2, Function[p, Prime[p + 1] Product[Prime@ k, {k, #[[p]]}]][LengthWhile[Differences@ #, # == 1 &] + 1] &@ PrimePi[FactorInteger[n][[All, 1]]]], {n, 120}] (* Michael De Vlieger, Aug 25 2016 *)

Formula

a(n) = A053589(n) * A053669(n).
a(n) = A002110(A257993(n)).