A276189 Triangle read by rows: T(n,k) = 2*(6*k^2 + 1)*(n + 1 - k) for 0 < k <= n; for k = 0, T(n,0) = n + 1.
1, 2, 14, 3, 28, 50, 4, 42, 100, 110, 5, 56, 150, 220, 194, 6, 70, 200, 330, 388, 302, 7, 84, 250, 440, 582, 604, 434, 8, 98, 300, 550, 776, 906, 868, 590, 9, 112, 350, 660, 970, 1208, 1302, 1180, 770, 10, 126, 400, 770, 1164, 1510, 1736, 1770, 1540, 974, 11, 140, 450, 880, 1358, 1812, 2170, 2360, 2310, 1948, 1202
Offset: 0
Examples
Triangle starts: ---------------------------------------------- n \ k | 0 1 2 3 4 5 6 7 ---------------------------------------------- 0 | 1; 1 | 2, 14; 2 | 3, 28, 50; 3 | 4, 42, 100, 110; 4 | 5, 56, 150, 220, 194; 5 | 6, 70, 200, 330, 388, 302; 6 | 7, 84, 250, 440, 582, 604, 434; 7 | 8, 98, 300, 550, 776, 906, 868, 590; ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened)
Programs
-
Magma
[IsZero(k) select n+1 else 2*(6*k^2+1)*(n+1-k): k in [0..n], n in [0..10]];
-
Magma
/* As triangle (see the second comment): */ m:=4; Q:=func; P:=func
; [[P(n,k,m): k in [0..n]]: n in [0..10]]; -
Mathematica
Table[If[k == 0, n + 1, 2 (6 k^2 + 1) (n + 1 - k)], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Aug 29 2016 *)
Formula
Extensions
Corrected, rewritten and extended by Bruno Berselli, Aug 31 2016
a(40) ff. corrected by Georg Fischer, Nov 08 2021
Comments