A281999 Half of the height of the right trapezoidal gnomon (of the derivative of Y=X^5).
1, 30, 181, 600, 1501, 3150, 5881, 10080, 16201, 24750, 36301, 51480, 70981, 95550, 126001, 163200, 208081, 261630, 324901, 399000, 485101, 584430, 698281, 828000, 975001, 1140750, 1326781, 1534680, 1766101, 2022750, 2306401, 2618880, 2962081, 3337950, 3748501, 4195800
Offset: 1
Examples
For n=2, a(2) = (2^5 - 1^5) - (1) = 30.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Anwar Al Ghabra, K. Gopala Krishna, Patrick Labelle, and Vasilisa Shramchenko, Enumeration of multi-rooted plane trees, arXiv:2301.09765 [math.CO], 2023.
- Stefano Maruelli, Trapezoidal gnomon roof, case n=5.
- Index entries for linear recurrences with constant coefficients, signature (4,-5,0,5,-4,1).
Programs
-
Mathematica
LinearRecurrence[{4,-5,0,5,-4,1},{1,30,181,600,1501,3150},40] (* Harvey P. Dale, May 03 2024 *)
-
PARI
Vec(x*(1 + 26*x + 66*x^2 + 26*x^3 + x^4)/((1 + x)*(1 - x)^5) + O(x^30)) \\ Colin Barker, Feb 27 2017
Formula
G.f.: x*(1 + 26*x + 66*x^2 + 26*x^3 + x^4)/((1 + x)*(1 - x)^5).
a(n) = (5*(n^2 - 1)*n^2 - (-1)^n + 1)/2.
a(n) = (n^5-(n-1)^5) - a(n-1).
a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6) for n>6. - Colin Barker, Feb 27 2017
Comments