A276170 Let n have j digits {d_j, d_(j-1), ..., d_2, d_1}. Sequence lists numbers n such that n = d_j^b_j + d_(j-1)^b_(j-1) + ... + d_2^b_2 + d_1^b_1 for some permutation {b_j, b_(j-1), ..., b_2, b_1} of the digits.
1, 1364, 3435, 4155, 4316, 4355, 17463, 48625, 63725, 78215, 117693, 136775, 137456, 137529, 164726, 184746, 196753, 264719, 326617, 326671, 397612, 423858, 516974, 637395, 652812, 653285, 653957, 687523, 834272, 936627, 1374962, 1617349, 1679812, 1683397, 1683514
Offset: 1
Examples
One of the permutations of {1,3,6,4} is {6,1,4,3} and 1^6+3^1+6^4+4^3 = 1364.
Links
- Paolo P. Lava, First 100 terms with applicable permutations
Programs
-
Maple
with(combinat); P:= proc(q) local a,b,c,d,j,k,ok,n; for n from 1 to q do ok:=1; d:=ilog10(n)+1; a:=convert(n,base,10); b:=permute(a,d); for k from 1 to nops(b) do c:=0; for j from 1 to d do if a[j]=0 and b[k][j]=0 then ok:=0; break; else c:=c+a[j]^b[k][j]; fi; od; if ok=1 then if c=n then print(n); break; fi; fi; od; od; end: P(10^6);
Comments