cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276179 n^2 * a(n) = 2*(7*n^2 - 7*n + 3)*a(n-1) - 12*(7*n^2 - 14*n + 9)*a(n-2) + 39*(7*n^2 - 21*n + 18) * a(n-3) - 72*(7*n^2 - 28*n + 30)*a(n-4) + 72*(7*n^2 - 35*n + 45) * a(n-5) - 216*(n-3)^2 * a(n-6), with a(0)=1, a(1)=6, a(2)=24, a(3)=78, a(4)=216, a(5)=504.

Original entry on oeis.org

1, 6, 24, 78, 216, 504, 906, 756, -2808, -17832, -57312, -104832, 81882, 1734156, 9360576, 35755956, 106475472, 232967664, 215497680, -1178534304, -8734303296, -36146763648, -108833048064, -220247838720, -46688571558, 2220777704700, 13473296923536, 53523581091900
Offset: 0

Views

Author

Gheorghe Coserea, Aug 24 2016

Keywords

Examples

			A(x) = 1 + 6*x + 24*x^2 + 78*x^3 + 216*x^4 + 504*x^5 + 906*x^6 + ... is the g.f.
		

Crossrefs

Programs

  • Magma
    I:=[6,24,78,216,504,906]; [1] cat [n le 6 select I[n] else (2*(7*n^2-7*n+3)*Self(n-1)-12*(7*n^2-14*n+9)*Self(n-2)+39*(7*n^2-21*n+18)*Self(n-3)-72*(7*n^2-28*n+30)*Self(n-4)+72*(7*n^2-35*n+45)*Self(n-5)-216*(n-3)^2*Self(n-6)) div n^2: n in [1..30]]; // Vincenzo Librandi, Aug 25 2016
  • PARI
    seq(N) = {
      my(a = vector(N));
      a[1] = 6; a[2] = 24; a[3] = 78; a[4] = 216; a[5] = 504; a[6] = 906;
      for (n = 7, N,
      my(t1 = 2*(7*n^2 - 7*n + 3)*a[n-1] - 12*(7*n^2 - 14*n + 9)*a[n-2],
         t2 = 39*(7*n^2 - 21*n + 18) * a[n-3] - 72*(7*n^2 - 28*n + 30)*a[n-4],
         t3 = 72*(7*n^2 - 35*n + 45) * a[n-5] - 216*(n-3)^2 * a[n-6]);
         a[n] = (t1+t2+t3)/n^2);
      concat(1,a);
    };
    seq(33)
    

Formula

n^2 * a(n) = 2*(7*n^2 - 7*n + 3)*a(n-1) - 12*(7*n^2 - 14*n + 9)*a(n-2) + 39*(7*n^2 - 21*n + 18) * a(n-3) - 72*(7*n^2 - 28*n + 30)*a(n-4) + 72*(7*n^2 - 35*n + 45) * a(n-5) - 216*(n-3)^2 * a(n-6), with a(0)=1, a(1)=6, a(2)=24, a(3)=78, a(4)=216, a(5)=504.
0 = x*(x+2)*(x+3)*(x^2+3*x+3)*(x^2+6*x+12)*y'' + (7*x^6 + 84*x^5 + 420*x^4 + 1092*x^3 + 1512*x^2 + 1008*x + 216)*y' + 9*(x+2)^2 * (x^3 + 6*x^2 + 12*x + 6)*y, where y(x) = A(x/-6).