A276187 Number of subsets of {1,..,n} of cardinality >= 2 such that the elements of each counted subset are pairwise coprime.
0, 1, 4, 7, 18, 21, 48, 63, 94, 105, 220, 235, 482, 529, 600, 711, 1438, 1501, 3020, 3211, 3594, 3849, 7720, 7975, 11142, 11877, 14628, 15459, 30946, 31201, 62432, 69855, 76126, 80221, 89820, 91611, 183258, 192601, 208600, 214231, 428502, 431573, 863188, 900563
Offset: 1
Keywords
Examples
From _Gus Wiseman_, May 08 2021: (Start) The a(2) = 1 through a(6) = 21 sets: {1,2} {1,2} {1,2} {1,2} {1,2} {1,3} {1,3} {1,3} {1,3} {2,3} {1,4} {1,4} {1,4} {1,2,3} {2,3} {1,5} {1,5} {3,4} {2,3} {1,6} {1,2,3} {2,5} {2,3} {1,3,4} {3,4} {2,5} {3,5} {3,4} {4,5} {3,5} {1,2,3} {4,5} {1,2,5} {5,6} {1,3,4} {1,2,3} {1,3,5} {1,2,5} {1,4,5} {1,3,4} {2,3,5} {1,3,5} {3,4,5} {1,4,5} {1,2,3,5} {1,5,6} {1,3,4,5} {2,3,5} {3,4,5} {1,2,3,5} {1,3,4,5} (End)
Links
- Robert Israel, Table of n, a(n) for n = 1..340
Crossrefs
The case of pairs is A015614.
The indivisible instead of coprime version is A051026(n) - n.
Allowing empty sets and singletons gives A084422.
The relatively prime instead of pairwise coprime version is A085945(n) - 1.
Allowing all singletons gives A187106.
Allowing only the singleton {1} gives A320426.
Row sums of A320436, each minus one.
The maximal case is counted by A343659.
The version for sets of divisors is A343655(n) - 1.
A000005 counts divisors.
A186972 counts pairwise coprime k-sets containing n.
A186974 counts pairwise coprime k-sets.
A326675 ranks pairwise coprime non-singleton sets.
Programs
-
Maple
f:= proc(S) option remember; local s, Sp; if S = {} then return 1 fi; s:= S[-1]; Sp:= S[1..-2]; procname(Sp) + procname(select(t -> igcd(t,s)=1, Sp)) end proc: seq(f({$1..n}) - n - 1, n=1..50); # Robert Israel, Aug 24 2016
-
Mathematica
f[S_] := f[S] = Module[{s, Sp}, If[S == {}, Return[1]]; s = S[[-1]]; Sp = S[[1;;-2]]; f[Sp] + f[Select[Sp, GCD[#, s] == 1&]]]; Table[f[Range[n]] - n - 1, {n, 1, 50}] (* Jean-François Alcover, Sep 15 2022, after Robert Israel *)
-
PARI
f(n,k=1)=if(n==1, return(2)); if(gcd(k,n)==1, f(n-1,n*k)) + f(n-1,k) a(n)=f(n)-n-1 \\ Charles R Greathouse IV, Aug 24 2016
-
Sage
from sage.combinat.subsets_pairwise import PairwiseCompatibleSubsets def is_coprime(x, y): return gcd(x, y) == 1 max_n = 40 seq = [] for n in range(1, max_n+1): P = PairwiseCompatibleSubsets(range(1,n+1), is_coprime) a_n = len([1 for s in P.list() if len(s) > 1]) seq.append(a_n) print(seq)
Formula
a(n) = A320426(n) - 1. - Gus Wiseman, May 08 2021
Extensions
Name and example edited by Robert Israel, Aug 24 2016
Comments