cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A320426 Number of nonempty pairwise coprime subsets of {1,...,n}, where a single number is not considered to be pairwise coprime unless it is equal to 1.

Original entry on oeis.org

1, 2, 5, 8, 19, 22, 49, 64, 95, 106, 221, 236, 483, 530, 601, 712, 1439, 1502, 3021, 3212, 3595, 3850, 7721, 7976, 11143, 11878, 14629, 15460, 30947, 31202, 62433, 69856, 76127, 80222, 89821, 91612, 183259, 192602, 208601, 214232, 428503, 431574, 863189
Offset: 1

Views

Author

Gus Wiseman, Jan 08 2019

Keywords

Comments

Two or more numbers are pairwise coprime if no pair of them has a common divisor > 1.

Examples

			The a(4) = 8 subsets of {1,2,3,4} are {1}, {1,2}, {1,3}, {1,4}, {2,3}, {3,4}, {1,2,3}, {1,3,4}. - _Michael B. Porter_, Jan 12 2019
From _Gus Wiseman_, May 09 2021: (Start)
The a(2) = 2 through a(6) = 22 sets:
   {1}     {1}      {1}       {1}        {1}
  {1,2}   {1,2}    {1,2}     {1,2}      {1,2}
          {1,3}    {1,3}     {1,3}      {1,3}
          {2,3}    {1,4}     {1,4}      {1,4}
         {1,2,3}   {2,3}     {1,5}      {1,5}
                   {3,4}     {2,3}      {1,6}
                  {1,2,3}    {2,5}      {2,3}
                  {1,3,4}    {3,4}      {2,5}
                             {3,5}      {3,4}
                             {4,5}      {3,5}
                            {1,2,3}     {4,5}
                            {1,2,5}     {5,6}
                            {1,3,4}    {1,2,3}
                            {1,3,5}    {1,2,5}
                            {1,4,5}    {1,3,4}
                            {2,3,5}    {1,3,5}
                            {3,4,5}    {1,4,5}
                           {1,2,3,5}   {1,5,6}
                           {1,3,4,5}   {2,3,5}
                                       {3,4,5}
                                      {1,2,3,5}
                                      {1,3,4,5}
(End)
		

Crossrefs

The case of pairs is A015614.
The case with singletons is A187106.
The version without singletons (except {1}) is A276187.
Row sums of A320436.
The version for divisors > 1 is A343654.
The version for divisors without singletons is A343655.
The maximal version is A343659.
A018892 counts coprime unordered pairs of divisors.
A051026 counts pairwise indivisible subsets of {1...n}.
A087087 ranks pairwise coprime subsets of {1...n}.
A326675 ranks pairwise coprime non-singleton subsets of {1...n}.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],CoprimeQ@@#&]],{n,10}]

Formula

a(n) = A187106(n) - n + 1 = A084422(n) - n.
a(n) = A276187(n) + 1. - Gus Wiseman, May 08 2021

Extensions

a(25)-a(43) from Alois P. Heinz, Jan 08 2019

A343652 Number of maximal pairwise coprime sets of divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 3, 4, 1, 5, 1, 5, 2, 2, 2, 8, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 8, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 10, 1, 2, 4, 6, 2, 5, 1, 4, 2, 5, 1, 12, 1, 2, 4, 4, 2, 5, 1, 8, 4, 2, 1, 10, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Apr 25 2021

Keywords

Comments

Also the number of maximal pairwise coprime sets of divisors > 1 of n. For example, the a(n) sets for n = 12, 30, 36, 60, 120 are:
{6} {30} {6} {30} {30}
{12} {2,15} {12} {60} {60}
{2,3} {3,10} {18} {2,15} {120}
{3,4} {5,6} {36} {3,10} {2,15}
{2,3,5} {2,3} {3,20} {3,10}
{2,9} {4,15} {3,20}
{3,4} {5,6} {3,40}
{4,9} {5,12} {4,15}
{2,3,5} {5,6}
{3,4,5} {5,12}
{5,24}
{8,15}
{2,3,5}
{3,4,5}
{3,5,8}

Examples

			The a(n) sets for n = 12, 30, 36, 60, 120:
  {1,6}    {1,30}     {1,6}    {1,30}     {1,30}
  {1,12}   {1,2,15}   {1,12}   {1,60}     {1,60}
  {1,2,3}  {1,3,10}   {1,18}   {1,2,15}   {1,120}
  {1,3,4}  {1,5,6}    {1,36}   {1,3,10}   {1,2,15}
           {1,2,3,5}  {1,2,3}  {1,3,20}   {1,3,10}
                      {1,2,9}  {1,4,15}   {1,3,20}
                      {1,3,4}  {1,5,6}    {1,3,40}
                      {1,4,9}  {1,5,12}   {1,4,15}
                               {1,2,3,5}  {1,5,6}
                               {1,3,4,5}  {1,5,12}
                                          {1,5,24}
                                          {1,8,15}
                                          {1,2,3,5}
                                          {1,3,4,5}
                                          {1,3,5,8}
		

Crossrefs

The case of pairs is A063647.
The case of triples is A066620.
The non-maximal version counting empty sets and singletons is A225520.
The non-maximal version with no 1's is A343653.
The non-maximal version is A343655.
The version for subsets of {1..n} is A343659.
The case without 1's or singletons is A343660.
A018892 counts pairwise coprime unordered pairs of divisors.
A048691 counts pairwise coprime ordered pairs of divisors.
A048785 counts pairwise coprime ordered triples of divisors.
A084422, A187106, A276187, and A320426 count pairwise coprime sets.
A100565 counts pairwise coprime unordered triples of divisors.
A305713 counts pairwise coprime non-singleton strict partitions.
A324837 counts minimal subsets of {1...n} with least common multiple n.
A325683 counts maximal Golomb rulers.
A326077 counts maximal pairwise indivisible sets.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@Most@*Subsets/@y];
    Table[Length[fasmax[Select[Subsets[Divisors[n]],CoprimeQ@@#&]]],{n,100}]

Formula

a(n) = A343660(n) + A005361(n).

A100565 a(n) = Card{(x,y,z) : x <= y <= z, x|n, y|n, z|n, gcd(x,y)=1, gcd(x,z)=1, gcd(y,z)=1}.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 4, 3, 5, 2, 8, 2, 5, 5, 5, 2, 8, 2, 8, 5, 5, 2, 11, 3, 5, 4, 8, 2, 15, 2, 6, 5, 5, 5, 13, 2, 5, 5, 11, 2, 15, 2, 8, 8, 5, 2, 14, 3, 8, 5, 8, 2, 11, 5, 11, 5, 5, 2, 25, 2, 5, 8, 7, 5, 15, 2, 8, 5, 15, 2, 18, 2, 5, 8, 8, 5, 15, 2, 14, 5, 5, 2, 25, 5, 5, 5, 11, 2, 25, 5, 8, 5, 5, 5, 17
Offset: 1

Views

Author

Vladeta Jovovic, Nov 28 2004

Keywords

Comments

First differs from A018892 at a(30) = 15, A018892(30) = 14.
First differs from A343654 at a(210) = 51, A343654(210) = 52.
Also a(n) = Card{(x,y,z) : x <= y <= z and lcm(x,y)=n, lcm(x,z)=n, lcm(y,z)=n}.
In words, a(n) is the number of pairwise coprime unordered triples of divisors of n. - Gus Wiseman, May 01 2021

Examples

			From _Gus Wiseman_, May 01 2021: (Start)
The a(n) triples for n = 1, 2, 4, 6, 8, 12, 24:
  (1,1,1)  (1,1,1)  (1,1,1)  (1,1,1)  (1,1,1)  (1,1,1)   (1,1,1)
           (1,1,2)  (1,1,2)  (1,1,2)  (1,1,2)  (1,1,2)   (1,1,2)
                    (1,1,4)  (1,1,3)  (1,1,4)  (1,1,3)   (1,1,3)
                             (1,1,6)  (1,1,8)  (1,1,4)   (1,1,4)
                             (1,2,3)           (1,1,6)   (1,1,6)
                                               (1,2,3)   (1,1,8)
                                               (1,3,4)   (1,2,3)
                                               (1,1,12)  (1,3,4)
                                                         (1,3,8)
                                                         (1,1,12)
                                                         (1,1,24)
(End)
		

Crossrefs

Positions of 2's through 5's are A000040, A001248, A030078, A068993.
The version for subsets of {1..n} instead of divisors is A015617.
The version for pairs of divisors is A018892.
The ordered version is A048785.
The strict case is A066620.
The version for strict partitions is A220377.
A version for sets of divisors of any size is A225520.
The version for partitions is A307719 (no 1's: A337563).
The case of distinct parts coprime is A337600 (ordered: A337602).
A001399(n-3) = A069905(n) = A211540(n+2) counts 3-part partitions.
A007304 ranks 3-part strict partitions.
A014311 ranks 3-part compositions.
A014612 ranks 3-part partitions.
A051026 counts pairwise indivisible subsets of {1..n}.
A302696 lists Heinz numbers of pairwise coprime partitions.
A337461 counts 3-part pairwise coprime compositions.

Programs

  • Mathematica
    pwcop[y_]:=And@@(GCD@@#==1&/@Subsets[y,{2}]);
    Table[Length[Select[Tuples[Divisors[n],3],LessEqual@@#&&pwcop[#]&]],{n,30}] (* Gus Wiseman, May 01 2021 *)
  • PARI
    A100565(n) = (numdiv(n^3)+3*numdiv(n)+2)/6; \\ Antti Karttunen, May 19 2017

Formula

a(n) = (tau(n^3) + 3*tau(n) + 2)/6.

A343655 Number of pairwise coprime sets of divisors of n, where a singleton is not considered pairwise coprime unless it is {1}.

Original entry on oeis.org

1, 2, 2, 3, 2, 6, 2, 4, 3, 6, 2, 10, 2, 6, 6, 5, 2, 10, 2, 10, 6, 6, 2, 14, 3, 6, 4, 10, 2, 22, 2, 6, 6, 6, 6, 17, 2, 6, 6, 14, 2, 22, 2, 10, 10, 6, 2, 18, 3, 10, 6, 10, 2, 14, 6, 14, 6, 6, 2, 38, 2, 6, 10, 7, 6, 22, 2, 10, 6, 22, 2, 24, 2, 6, 10, 10, 6, 22, 2
Offset: 1

Views

Author

Gus Wiseman, Apr 26 2021

Keywords

Comments

First differs from A015995 at a(210) = 88, A015995(210) = 86.

Examples

			For example, the a(n) subsets for n = 1, 2, 4, 6, 8, 12, 16, 24 are:
  {1}  {1}    {1}    {1}      {1}    {1}      {1}     {1}
       {1,2}  {1,2}  {1,2}    {1,2}  {1,2}    {1,2}   {1,2}
              {1,4}  {1,3}    {1,4}  {1,3}    {1,4}   {1,3}
                     {1,6}    {1,8}  {1,4}    {1,8}   {1,4}
                     {2,3}           {1,6}    {1,16}  {1,6}
                     {1,2,3}         {2,3}            {1,8}
                                     {3,4}            {2,3}
                                     {1,12}           {3,4}
                                     {1,2,3}          {3,8}
                                     {1,3,4}          {1,12}
                                                      {1,24}
                                                      {1,2,3}
                                                      {1,3,4}
                                                      {1,3,8}
		

Crossrefs

The case of pairs is A063647.
The case of triples is A066620.
The version with empty sets and singletons is A225520.
A version for prime indices is A304711.
The version for strict integer partitions is A305713.
The version for subsets of {1..n} is A320426 = A276187 + 1.
The version for binary indices is A326675.
The version for integer partitions is A327516.
The version for standard compositions is A333227.
The maximal case is A343652.
The case without 1's is A343653.
The case without 1's with singletons is A343654.
The maximal case without 1's is A343660.
A018892 counts coprime unordered pairs of divisors.
A051026 counts pairwise indivisible subsets of {1..n}.
A100565 counts pairwise coprime unordered triples of divisors.
A325683 counts maximal Golomb rulers.
A326077 counts maximal pairwise indivisible sets.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Divisors[n]],CoprimeQ@@#&]],{n,100}]

A066620 Number of unordered triples of distinct pairwise coprime divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 7, 0, 0, 1, 1, 1, 4, 0, 1, 1, 3, 0, 7, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 13, 0, 1, 2, 0, 1, 7, 0, 2, 1, 7, 0, 6, 0, 1, 2, 2, 1, 7, 0, 4, 0, 1, 0, 13, 1, 1, 1, 3, 0, 13, 1, 2, 1, 1, 1, 5, 0, 2, 2, 4, 0, 7, 0
Offset: 1

Views

Author

K. B. Subramaniam (kb_subramaniambalu(AT)yahoo.com) and Amarnath Murthy, Dec 24 2001

Keywords

Comments

a(m) = a(n) if m and n have same factorization structure.

Examples

			a(24) = 3: the divisors of 24 are 1, 2, 3, 4, 6, 8, 12 and 24. The triples are (1, 2, 3), (1, 2, 9), (1, 3, 4).
a(30) = 7: the triples are (1, 2, 3), (1, 2, 5), (1, 3, 5), (2, 3, 5), (1, 3, 10), (1, 5, 6), (1, 2, 15).
		

References

  • Amarnath Murthy, Decomposition of the divisors of a natural number into pairwise coprime sets, Smarandache Notions Journal, vol. 12, No. 1-2-3, Spring 2001.pp 303-306.

Crossrefs

Positions of zeros are A000961.
Positions of ones are A006881.
The version for subsets of {1..n} instead of divisors is A015617.
The non-strict ordered version is A048785.
The version for pairs of divisors is A063647.
The non-strict version (3-multisets) is A100565.
The version for partitions is A220377 (non-strict: A307719).
A version for sets of divisors of any size is A225520.
A000005 counts divisors.
A001399(n-3) = A069905(n) = A211540(n+2) counts 3-part partitions.
A007304 ranks 3-part strict partitions.
A014311 ranks 3-part compositions.
A014612 ranks 3-part partitions.
A018892 counts unordered pairs of coprime divisors (ordered: A048691).
A051026 counts pairwise indivisible subsets of {1..n}.
A337461 counts 3-part pairwise coprime compositions.
A338331 lists Heinz numbers of pairwise coprime partitions.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Divisors[n],{3}],CoprimeQ@@#&]],{n,100}] (* Gus Wiseman, Apr 28 2021 *)
  • PARI
    A066620(n) = (numdiv(n^3)-3*numdiv(n)+2)/6; \\ After Jovovic's formula. - Antti Karttunen, May 27 2017
    
  • Python
    from sympy import divisor_count as d
    def a(n): return (d(n**3) - 3*d(n) + 2)/6 # Indranil Ghosh, May 27 2017

Formula

In the reference it is shown that if k is a squarefree number with r prime factors and m with (r+1) prime factors then a(m) = 4*a(k) + 2^k - 1.
a(n) = (tau(n^3)-3*tau(n)+2)/6. - Vladeta Jovovic, Nov 27 2004

Extensions

More terms from Vladeta Jovovic, Apr 03 2003
Name corrected by Andrey Zabolotskiy, Dec 09 2020
Name corrected by Gus Wiseman, Apr 28 2021 (ordered version is 6*a(n))

A343654 Number of pairwise coprime sets of divisors > 1 of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 4, 3, 5, 2, 8, 2, 5, 5, 5, 2, 8, 2, 8, 5, 5, 2, 11, 3, 5, 4, 8, 2, 15, 2, 6, 5, 5, 5, 13, 2, 5, 5, 11, 2, 15, 2, 8, 8, 5, 2, 14, 3, 8, 5, 8, 2, 11, 5, 11, 5, 5, 2, 25, 2, 5, 8, 7, 5, 15, 2, 8, 5, 15, 2, 18, 2, 5, 8, 8, 5, 15, 2, 14, 5, 5
Offset: 1

Views

Author

Gus Wiseman, Apr 26 2021

Keywords

Comments

First differs from A100565 at a(210) = 52, A100565(210) = 51.

Examples

			The a(n) sets for n = 1, 2, 4, 6, 8, 12, 24, 30, 32, 36, 48:
  {}  {}   {}   {}     {}   {}     {}     {}       {}    {}     {}
      {2}  {2}  {2}    {2}  {2}    {2}    {2}      {2}   {2}    {2}
           {4}  {3}    {4}  {3}    {3}    {3}      {4}   {3}    {3}
                {6}    {8}  {4}    {4}    {5}      {8}   {4}    {4}
                {2,3}       {6}    {6}    {6}      {16}  {6}    {6}
                            {12}   {8}    {10}     {32}  {9}    {8}
                            {2,3}  {12}   {15}           {12}   {12}
                            {3,4}  {24}   {30}           {18}   {16}
                                   {2,3}  {2,3}          {36}   {24}
                                   {3,4}  {2,5}          {2,3}  {48}
                                   {3,8}  {3,5}          {2,9}  {2,3}
                                          {5,6}          {3,4}  {3,4}
                                          {2,15}         {4,9}  {3,8}
                                          {3,10}                {3,16}
                                          {2,3,5}
		

Crossrefs

The version for partitions is A007359.
The version for subsets of {1..n} is A084422.
The case of pairs is A089233.
The version with 1's is A225520.
The maximal case is A343652.
The case without empty sets or singletons is A343653.
The maximal case without singletons is A343660.
A018892 counts pairwise coprime unordered pairs of divisors.
A051026 counts pairwise indivisible subsets of {1..n}.
A100565 counts pairwise coprime unordered triples of divisors.
A187106, A276187, and A320426 count other types of pairwise coprime sets.
A326077 counts maximal pairwise indivisible sets.

Programs

  • Mathematica
    pwcop[y_]:=And@@(GCD@@#1==1&)/@Subsets[y,{2}];
    Table[Length[Select[Subsets[Rest[Divisors[n]]],pwcop]],{n,100}]

A343659 Number of maximal pairwise coprime subsets of {1..n}.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 4, 7, 9, 9, 10, 10, 12, 16, 19, 19, 20, 20, 22, 28, 32, 32, 33, 54, 61, 77, 84, 84, 85, 85, 94, 112, 123, 158, 161, 161, 176, 206, 212, 212, 214, 214, 229, 241, 260, 260, 263, 417, 428, 490, 521, 521, 526, 655, 674, 764, 818, 818, 820, 820, 874, 918, 975, 1182, 1189, 1189
Offset: 1

Views

Author

Gus Wiseman, Apr 26 2021

Keywords

Comments

For this sequence, it does not matter whether singletons are considered pairwise coprime.
For n > 2, also the number of maximal pairwise coprime subsets of {2..n}.
For each prime p <= n, p divides exactly one element of each maximal subset. - Bert Dobbelaere, May 04 2021

Examples

			The a(1) = 1 through a(9) = 7 subsets:
  {1}  {12}  {123}  {123}  {1235}  {156}   {1567}   {1567}   {1567}
                    {134}  {1345}  {1235}  {12357}  {12357}  {12357}
                                   {1345}  {13457}  {13457}  {12579}
                                                    {13578}  {13457}
                                                             {13578}
                                                             {14579}
                                                             {15789}
		

Crossrefs

The case of pairs is A015614.
The case of triples is A015617.
The non-maximal version counting empty sets and singletons is A084422.
The non-maximal version counting singletons is A187106.
The non-maximal version is A320426(n) = A276187(n) + 1.
The version for indivisibility instead of coprimality is A326077.
The version for sets of divisors is A343652.
The version for sets of divisors > 1 is A343660.
A018892 counts coprime unordered pairs of divisors.
A051026 counts pairwise indivisible subsets of {1..n}.
A100565 counts pairwise coprime unordered triples of divisors.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@Most@*Subsets/@y];
    Table[Length[fasmax[Select[Subsets[Range[n]],CoprimeQ@@#&]]],{n,15}]

Extensions

More terms from Bert Dobbelaere, May 04 2021

A320436 Irregular triangle read by rows where T(n,k) is the number of pairwise coprime k-subsets of {1,...,n}, 1 <= k <= A036234(n), where a single number is not considered to be pairwise coprime unless it is equal to 1.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 2, 1, 9, 7, 2, 1, 11, 8, 2, 1, 17, 19, 10, 2, 1, 21, 25, 14, 3, 1, 27, 37, 24, 6, 1, 31, 42, 26, 6, 1, 41, 73, 68, 32, 6, 1, 45, 79, 72, 33, 6, 1, 57, 124, 151, 105, 39, 6, 1, 63, 138, 167, 114, 41, 6, 1, 71, 159, 192, 128, 44, 6, 1, 79
Offset: 1

Views

Author

Gus Wiseman, Jan 08 2019

Keywords

Examples

			Triangle begins:
   1
   1   1
   1   3   1
   1   5   2
   1   9   7   2
   1  11   8   2
   1  17  19  10   2
   1  21  25  14   3
   1  27  37  24   6
   1  31  42  26   6
   1  41  73  68  32   6
   1  45  79  72  33   6
   1  57 124 151 105  39   6
   1  63 138 167 114  41   6
   1  71 159 192 128  44   6
   1  79 183 228 157  56   8
		

Crossrefs

Except for the k = 1 column, same as A186974.
Row sums are A320426.
Second column is A015614.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n],{k}],CoprimeQ@@#&]],{n,16},{k,PrimePi[n]+1}]

A343660 Number of maximal pairwise coprime sets of at least two divisors > 1 of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 4, 0, 0, 1, 1, 1, 4, 0, 1, 1, 3, 0, 4, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 8, 0, 1, 2, 0, 1, 4, 0, 2, 1, 4, 0, 6, 0, 1, 2, 2, 1, 4, 0, 4, 0, 1, 0, 8, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Apr 26 2021

Keywords

Examples

			The a(n) sets for n = 6, 12, 24, 30, 36, 60, 72, 96:
  {2,3}  {2,3}  {2,3}  {5,6}    {2,3}  {5,6}    {2,3}  {2,3}
         {3,4}  {3,4}  {2,15}   {2,9}  {2,15}   {2,9}  {3,4}
                {3,8}  {3,10}   {3,4}  {3,10}   {3,4}  {3,8}
                       {2,3,5}  {4,9}  {3,20}   {3,8}  {3,16}
                                       {4,15}   {4,9}  {3,32}
                                       {5,12}   {8,9}
                                       {2,3,5}
                                       {3,4,5}
		

Crossrefs

The case of pairs is A089233.
The case with 1's is A343652.
The case with singletons is (also) A343652.
The non-maximal version is A343653.
The non-maximal version with 1's is A343655.
The version for subsets of {2..n} is A343659 (for n > 2).
A018892 counts coprime unordered pairs of divisors.
A051026 counts pairwise indivisible subsets of {1..n}.
A066620 counts pairwise coprime 3-sets of divisors.
A100565 counts pairwise coprime unordered triples of divisors.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@Most@*Subsets/@y];
    Table[Length[fasmax[Select[Subsets[Rest[Divisors[n]]],CoprimeQ@@#&]]],{n,100}]

Formula

a(n) = A343652(n) - A005361(n).

A319187 Number of pairwise coprime subsets of {1,...,n} of maximum cardinality (A036234).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 3, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8, 8, 16, 16, 24, 24, 24, 24, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 72, 72, 72, 72, 72, 72, 72, 72
Offset: 1

Views

Author

Gus Wiseman, Jan 09 2019

Keywords

Comments

Two or more numbers are pairwise coprime if no pair of them has a common divisor > 1. A single number is not considered to be pairwise coprime unless it is equal to 1.

Examples

			The a(8) = 3 subsets are {1,2,3,5,7}, {1,3,4,5,7}, {1,3,5,7,8}.
		

Crossrefs

Rightmost terms of A186974 and A320436.
Run lengths are A053707.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n],{PrimePi[n]+1}],CoprimeQ@@#&]],{n,24}] (* see A186974 for a faster program *)
  • PARI
    a(n) = prod(p=1, n, if (isprime(p), logint(n, p), 1)); \\ Michel Marcus, Dec 26 2020

Formula

a(n) = Product_{p prime <= n} floor(log_p(n)).
a(n) = A000005(A045948(n)). - Ridouane Oudra, Sep 02 2019
Showing 1-10 of 10 results.