cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276226 a(n+3) = 2*a(n+2) + a(n+1) + a(n) with a(0)=0, a(1)=6, a(2)=8.

Original entry on oeis.org

0, 6, 8, 22, 58, 146, 372, 948, 2414, 6148, 15658, 39878, 101562, 258660, 658760, 1677742, 4272904, 10882310, 27715266, 70585746, 179769068, 457839148, 1166033110, 2969674436, 7563221130, 19262149806, 49057195178, 124939761292, 318198867568, 810394691606, 2063928012072, 5256449583318, 13387221870314, 34094821336018
Offset: 0

Views

Author

G. C. Greubel, Aug 24 2016

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,6,8]; [n le 3 select I[n] else 2*Self(n-1)+ Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Aug 25 2016
    
  • Mathematica
    LinearRecurrence[{2, 1, 1}, {0, 6, 8}, 50]
    CoefficientList[Series[2 (3 x - 2 x^2)/(1 - 2 x - x^2 - x^3), {x, 0, 33}], x] (* Michael De Vlieger, Aug 25 2016 *)
  • PARI
    concat(0, Vec(2*(3*x-2*x^2)/(1-2*x-x^2-x^3) + O(x^99))) \\ Altug Alkan, Aug 25 2016

Formula

Let p = (4*(61 + 9*sqrt(29)))^(1/3), q = (4*(61 - 9*sqrt(29)))^(1/3), and x = (1/6)*(4 + p + q) then x^n = (1/6)*(2*A276225(n) + a(n)*(p + q) + A077939(n-1)*(p^2 + q^2)).G.f.: 2*(3*x - 2*x^2)/(1 - 2*x - x^2 - x^3).