cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276231 E.g.f. A(x) satisfies: A(x)^A(x) = LambertW(-x)/(-x).

Original entry on oeis.org

1, 1, 1, 7, 37, 441, 4771, 79213, 1320649, 28318321, 636978151, 16863972621, 475580960317, 15055752973561, 508984025190187, 18802677669334861, 739723172361876241, 31282037176343362785, 1402437758091393319759, 66859536126516402568717, 3362832363918613596662341, 178500985406930615357763241, 9950984335825184802962609491, 582129154096893229447821411597, 35620632904151979409688095495897, 2277073896917989779381561818509201
Offset: 0

Views

Author

Paul D. Hanna, Aug 24 2016

Keywords

Comments

Let G(x) = (-x)/LambertW(-x), then A(x)^A(x) = 1/G(x) where G(x)^G(x) = 1/exp(x).
a(n) = 0 (mod 3) when n = 6*k+5, k>=0, otherwise a(n) = 1 (mod 3).

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + 7*x^3/3! + 37*x^4/4! + 441*x^5/5! + 4771*x^6/6! + 79213*x^7/7! + 1320649*x^8/8! + 28318321*x^9/9! + 636978151*x^10/10! + 16863972621*x^11/11! + 475580960317*x^12/12! +...
such that A(x)^A(x) = LambertW(-x)/(-x), where
LambertW(-x)/(-x) = 1 + x + 3*x^2/2! + 16*x^3/3! + 125*x^4/4! + 1296*x^5/5! + 16807*x^6/6! + 262144*x^7/7! + 4782969*x^8/8! +...+ (n+1)^(n-1)*x^n/n! +...
The logarithm of the e.g.f. A(x) begins
log(A(x)) = x + 6*x^3/3! + 12*x^4/4! + 320*x^5/5! + 2190*x^6/6! + 51492*x^7/7! + 685496*x^8/8! + 17286768*x^9 +...+ A097174(n)*x^n/n! +...
which equals -T(-T(x)), where
T(x) = x + 2*x^2/2! + 9*x^3/3! + 64*x^4/4! + 625*x^5/5! + 7776*x^6/6! + 117649*x^7/7! + 2097152*x^8/8! +...+ n^(n-1)*x^n/n! +...
		

Crossrefs

Cf. A097174 (log(A(x))).

Programs

  • Mathematica
    CoefficientList[Series[E^LambertW[-LambertW[-x]], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 26 2016 *)
  • PARI
    {a(n) = my(A=1+x, W); W=serreverse(x*exp(-x +x^2*O(x^n)))/x;
    for(i=0,n, A = W^(1/A) ); n!*polcoeff(A,n)}
    for(n=0, 40, print1(a(n), ", "))

Formula

E.g.f.: exp( -T(-T(x)) ), where T(x) = Sum_{n>=1} n^(n-1)*x^n/n!.
a(n) ~ n^(n-1)/(1+LambertW(1)). - Vaclav Kotesovec, Aug 26 2016