cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A115287 Decimal expansion of 1/(1+LambertW(1)).

Original entry on oeis.org

6, 3, 8, 1, 0, 3, 7, 4, 3, 3, 6, 5, 1, 1, 0, 7, 7, 8, 5, 2, 2, 4, 0, 7, 3, 8, 5, 5, 1, 9, 8, 8, 0, 3, 1, 4, 4, 4, 3, 9, 3, 3, 8, 4, 1, 2, 8, 9, 0, 2, 7, 6, 4, 0, 4, 1, 9, 4, 8, 3, 1, 9, 3, 6, 5, 0, 3, 4, 2, 1, 0, 1, 0, 5, 6, 7, 6, 0, 0, 8, 3, 0, 4, 1, 0, 0, 1, 8, 5, 2, 5, 1, 0, 5, 2, 7, 4, 8, 3, 3, 1, 5, 7, 0, 9
Offset: 0

Views

Author

Eric W. Weisstein, Jan 19 2006

Keywords

Examples

			0.63810374336511077852...
		

Crossrefs

Programs

Formula

Equals Integral_{x=-oo..oo} 1/(Pi^2 + (exp(x)-x)^2) dx (discovered by Victor Adamchik). - Amiram Eldar, Jul 04 2021

A276232 E.g.f. W(x)^W(x), where W(x) = LambertW(-x)/(-x) and satisfies W(x)^(1/W(x)) = exp(x).

Original entry on oeis.org

1, 1, 5, 37, 369, 4641, 70513, 1256361, 25689569, 592998049, 15254145441, 432741923769, 13422771397489, 451956633181041, 16418360947494353, 640101032269166281, 26659869619363530177, 1181426235219348415041, 55506506359841719631425, 2756055067645593490566489, 144211201693287134720633681, 7931567651481815767204102801
Offset: 0

Views

Author

Paul D. Hanna, Aug 24 2016

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 37*x^3/3! + 369*x^4/4! + 4641*x^5/5! + 70513*x^6/6! + 1256361*x^7/7! + 25689569*x^8/8! + 592998049*x^9/9! + 15254145441*x^10/10! +...
such that A(x) = W(x)^W(x).
Define W(x) = LambertW(-x)/(-x), where
W(x) = 1 + x + 3*x^2/2! + 16*x^3/3! + 125*x^4/4! + 1296*x^5/5! + 16807*x^6/6! + 262144*x^7/7! + 4782969*x^8/8! + 100000000*x^9/9! +...+ (n+1)^(n-1)*x^n/n! +...
satisfies W(x) = exp(x)^W(x).
		

Crossrefs

Cf. A276231.

Programs

  • Mathematica
    CoefficientList[Series[E^(LambertW[-x]^2/x), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 26 2016 *)
  • PARI
    {a(n) = my(A=1+x, W); W=serreverse(x*exp(-x +x^2*O(x^n)))/x; A = W^W; n!*polcoeff(A,n)}
    for(n=0, 40, print1(a(n), ", "))

Formula

E.g.f.: exp( LambertW(-x)^2/x ).
a(n) ~ 2*exp(exp(1)+1)*n^(n-1). - Vaclav Kotesovec, Aug 26 2016
Showing 1-2 of 2 results.