A276267 a(n) = ( a(n-1)^2*a(n-2)^2*a(n-3)^2 + 1 ) / a(n-4), with a(0)=a(1)=a(2)=a(3)=1.
1, 1, 1, 1, 2, 5, 101, 1020101, 132690278976255013, 37379828474243017116309068570169440106423243719554
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..11
Programs
-
Mathematica
RecurrenceTable[{a[n] == (a[n - 1]^2 a[n - 2]^2 a[n - 3]^2 + 1)/a[n - 4], a[0] == a[1] == a[2] == a[3] == 1}, a, {n, 0, 10}] (* Michael De Vlieger, Aug 26 2016 *) nxt[{a_,b_,c_,d_}]:={b,c,d,(b^2 c^2 d^2+1)/a}; NestList[nxt,{1,1,1,1},10][[All,1]] (* Harvey P. Dale, Nov 18 2021 *)
-
Ruby
def A(m, n) a = Array.new(m, 1) ary = [1] while ary.size < n + 1 i = (a[1..-1].inject(:*)) ** 2 + 1 break if i % a[0] > 0 a = *a[1..-1], i / a[0] ary << a[0] end ary end def A276267(n) A(4, n) end