cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276271 a(0) = a(1) = a(2) = a(3) = 1; for n > 3, a(n) = (a(n-1)^2+a(n-2)^2+a(n-3)^2+a(n-1)+a(n-2)+a(n-3))/a(n-4).

Original entry on oeis.org

1, 1, 1, 1, 6, 46, 2206, 4870846, 3954191749561, 339905052007042640998641, 52373274877565894156748130733610185904753361, 563138297002425210235477817802336090254190075906443582099838858026136728896536841
Offset: 0

Views

Author

Seiichi Manyama, Aug 26 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_,c_,d_}]:={b,c,d,(b^2+c^2+d^2+b+c+d)/a}; NestList[nxt,{1,1,1,1},12][[All,1]] (* Harvey P. Dale, Mar 10 2017 *)
  • Ruby
    def A(m, n)
      a = Array.new(m, 1)
      ary = [1]
      while ary.size < n + 1
        i = a[1..-1].inject(0){|s, i| s + i * i} + a[1..-1].inject(:+)
        break if i % a[0] > 0
        a = *a[1..-1], i / a[0]
        ary << a[0]
      end
      ary
    end
    def A276271(n)
      A(4, n)
    end

Formula

a(n) = 8*a(n-1)*a(n-2)*a(n-3)-a(n-4)-1.
a(n) ~ 2^(-3/2) * c^(d^n), where c = 1.2578918597... and d = A058265 = 1.83928675521416... = (1 + (19 + 3*sqrt(33))^(1/3) + (19 - 3*sqrt(33))^(1/3))/3. - Vaclav Kotesovec, Mar 20 2017