A276323 a(n) = (binomial(2 * prime(n + 3), prime(n + 3)) * A005259(prime(n + 3) - 1) - 2)/prime(n + 3)^5 for n >= 1.
4382314, 59821998476834, 338197165389273486, 17314015796594772560245514, 145853326344012138627669357202, 12936469013977571458378002436843685186, 15931675838688077485749893663903436780403973163302
Offset: 1
Keywords
Examples
a(1) = (binomial(14, 7) * A005259(6) - 2)/7^5 = (3432 * 21460825 - 2)/7^5 = 4382314.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..88
- Julian Rosen, Periods, supercongruences, and their motivic lifts, arXiv:1608.06864 [math.NT], 2016.
Programs
-
Mathematica
Table[(Binomial[2 Prime[n + 3], Prime[n + 3]] Sum[(Binomial[#, k] Binomial[# + k, k])^2, {k, 0, #}] &[Prime[n + 3] - 1] - 2)/Prime[n + 3]^5, {n, 7}] (* Michael De Vlieger, Aug 30 2016 *)
-
Ruby
require 'prime' def C(n, r) r = [r, n - r].min return 1 if r == 0 return n if r == 1 numerator = (n - r + 1..n).to_a denominator = (1..r).to_a (2..r).each{|p| pivot = denominator[p - 1] if pivot > 1 offset = (n - r) % p (p - 1).step(r - 1, p){|k| numerator[k - offset] /= pivot denominator[k] /= pivot } end } result = 1 (0..r - 1).each{|k| result *= numerator[k] if numerator[k] > 1 } return result end def A005259(n) i = 0 a, b = 1, 5 ary = [1] while i < n i += 1 a, b = b, ((((34 * i + 51) * i + 27) * i + 5) * b - i ** 3 * a) / (i + 1) ** 3 ary << a end ary end def A276323(n) p_ary = Prime.take(n + 3)[3..-1] a = A005259(p_ary[-1] - 1) ary = [] p_ary.each{|i| j = C(2 * i, i) * a[i - 1] - 2 break if j % i ** 5 > 0 ary << j / i ** 5 } ary end
Comments