cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276323 a(n) = (binomial(2 * prime(n + 3), prime(n + 3)) * A005259(prime(n + 3) - 1) - 2)/prime(n + 3)^5 for n >= 1.

Original entry on oeis.org

4382314, 59821998476834, 338197165389273486, 17314015796594772560245514, 145853326344012138627669357202, 12936469013977571458378002436843685186, 15931675838688077485749893663903436780403973163302
Offset: 1

Views

Author

Seiichi Manyama, Aug 30 2016

Keywords

Comments

Let p be a prime > 5. Binomial(2 * p, p) * A005259(p - 1) == 2 (mod p^5). So a(n) is an integer.

Examples

			a(1) = (binomial(14, 7) * A005259(6) - 2)/7^5 = (3432 * 21460825 - 2)/7^5 = 4382314.
		

Crossrefs

Programs

  • Mathematica
    Table[(Binomial[2 Prime[n + 3], Prime[n + 3]] Sum[(Binomial[#, k] Binomial[# + k, k])^2, {k, 0, #}] &[Prime[n + 3] - 1] - 2)/Prime[n + 3]^5, {n, 7}] (* Michael De Vlieger, Aug 30 2016 *)
  • Ruby
    require 'prime'
    def C(n, r)
      r = [r, n - r].min
      return 1 if r == 0
      return n if r == 1
      numerator = (n - r + 1..n).to_a
      denominator = (1..r).to_a
      (2..r).each{|p|
        pivot = denominator[p - 1]
        if pivot > 1
          offset = (n - r) % p
          (p - 1).step(r - 1, p){|k|
            numerator[k - offset] /= pivot
            denominator[k] /= pivot
          }
        end
      }
      result = 1
      (0..r - 1).each{|k|
        result *= numerator[k] if numerator[k] > 1
      }
      return result
    end
    def A005259(n)
      i = 0
      a, b = 1, 5
      ary = [1]
      while i < n
        i += 1
        a, b = b, ((((34 * i + 51) * i + 27) * i + 5) * b - i ** 3 * a) / (i + 1) ** 3
        ary << a
      end
      ary
    end
    def A276323(n)
      p_ary = Prime.take(n + 3)[3..-1]
      a = A005259(p_ary[-1] - 1)
      ary = []
      p_ary.each{|i|
        j = C(2 * i, i) * a[i - 1] - 2
        break if j % i ** 5 > 0
        ary << j / i ** 5
      }
      ary
    end