cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276348 a(n) = the smallest number k such that k*n is a number with a string of 1's followed by a string of 0's.

Original entry on oeis.org

10, 5, 370, 25, 2, 185, 158730, 125, 123456790, 1, 10, 925, 85470, 79365, 74, 625, 653594771241830, 61728395, 58479532163742690, 5, 52910, 5, 483091787439613526570, 4625, 4, 42735, 41152263374485596707818930, 396825, 383141762452107279693486590, 37
Offset: 1

Views

Author

Jaroslav Krizek, Aug 30 2016

Keywords

Comments

a(n) = the smallest number k such that k*n is a number from A276349.
a(n) > 0 for all n.

Examples

			For n=3; 3*370 = 1110 (term of A276349).
		

References

  • L. Pick, Dirichletovy šuplíčky. Pokroky matematiky, fyziky & astronomie; 2 (2016), 106-118. (In Czech; The Dirichlet pigeonhole principle)

Crossrefs

Programs

  • Magma
    a:=10; S:=[a]; for n in [2..6] do k:=0; flag:= true; while flag do k+:=1; if [k*n] subset [n: n in [1..10000] | Seqint(Setseq(Set(Sort(Intseq(n))))) eq 10 and Seqint(Sort((Intseq(n)))) eq n] then Append(~S, k); a:=k; flag:=false; end if; end while; end for; S;
  • Maple
    f:= proc(n) local b,c,d,m,q;
        b:= padic:-ordp(n,2); c:= padic:-ordp(n,5); if b+c=0 then d:= 1 else d:= max(b,c) fi; m:= n/2^b/5^c; q:= numtheory:-order(10,9*m);
         2^(d-b)*5^(d-c)*(10^q-1)/(9*m)
    end proc:
    map(f, [$1..100]); # Robert Israel, Aug 30 2016
  • Mathematica
    Table[k = 1; While[! If[Length@ # == 2, Flatten@ Map[Union, #] == {1, 0}, False] &@ Split@ IntegerDigits[k n], k++]; k, {n, 8}] (* Michael De Vlieger, Aug 30 2016 *)

Formula

a(n) = A052983(n)/n.
From Robert Israel, Aug 30 2016: (Start)
Let n = 2^b*5^c*m where GCD(m,10)=1, and q = A084680(9*m).
If b=c=0 let d=1, otherwise d=max(b,c).
Then a(n) = 2^(d-a)*5^(d-b)*(10^q-1)/(9*m). (End)