cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A052983 Least multiple of n consisting of a succession of 1's followed by a succession of 0's.

Original entry on oeis.org

10, 10, 1110, 100, 10, 1110, 1111110, 1000, 1111111110, 10, 110, 11100, 1111110, 1111110, 1110, 10000, 11111111111111110, 1111111110, 1111111111111111110, 100, 1111110, 110, 11111111111111111111110, 111000, 100, 1111110, 1111111111111111111111111110
Offset: 1

Views

Author

Lekraj Beedassy, Jun 26 2003

Keywords

Comments

All entries are differences of two terms of A000042. Since the pigeonhole principle guarantees that, for any m, two among the first m+1 entries of A000042 are congruent modulo m, their difference (i.e. belonging to this sequence) is therefore divisible by m, so that such numbers exist for all m. This sequence is thus infinite.
For n>1, a(n) consists of s 1's and t 0's, where s=A084681(X) and t is the greater of p or q (s=1 for X=1, t=1 for p=q=0), when we write n=X*Y with (X,Y)=1 and Y=2^p*5^q.

Examples

			We have a(6)=1110 because 6 divides 1110=6*185, the smallest such one with a string of 1's followed by that of 0's
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Select[ Map[ FromDigits, IntegerDigits[ Table[ Sum[2^i, {i, k, j, -1}], {j, k, 1, -1}], 2]]/n, IntegerQ[ # ] & ]; g[n_] := Block[{k = 1}, While[ f[n] == {}, k++ ]; n*Min[ f[n]]]; Table[ g[n], {n, 1, 27}]
    nn=30;With[{nos=Sort[Flatten[Table[FromDigits[Join[Table[1,{n}], Table[ 0,{i}]]],{n,nn},{i,5}]]]},Flatten[Table[Select[nos,Divisible[#,n]&,1],{n,nn}]]] (* Harvey P. Dale, Mar 09 2014 *)

Formula

a(n) = A276348(n) * n; A227362(a(n)) = 10. - Jaroslav Krizek, Aug 30 2016

Extensions

Edited, corrected and extended by Robert G. Wilson v, Jun 26 2003

A276349 Numbers consisting of a nonempty string of 1's followed by a nonempty string of 0's.

Original entry on oeis.org

10, 100, 110, 1000, 1100, 1110, 10000, 11000, 11100, 11110, 100000, 110000, 111000, 111100, 111110, 1000000, 1100000, 1110000, 1111000, 1111100, 1111110, 10000000, 11000000, 11100000, 11110000, 11111000, 11111100, 11111110, 100000000, 110000000, 111000000
Offset: 1

Views

Author

Jaroslav Krizek, Aug 30 2016

Keywords

Comments

Intersection of A037415 and A009996 except for 1 [Corrected by David A. Corneth, Aug 30 2016].
Set of terms from sequence A052983.
a(n) is the binary expansion of A043569(n). - Michel Marcus, Sep 04 2016

Examples

			60 is of the form binomial(a, 2) + b where 0 < b <= a and a = 11, b = 5. So a(60) has (11 + 1) digits and 5 leading ones. The other digits are 0. Giving a(60) = 111110000000. It has 7 (more than 1) trailing zeros so the next one, a(61) is a(60) + 10^(7 - 1). - _David A. Corneth_, Aug 30 2016
		

Crossrefs

Programs

  • Magma
    [n: n in [1..10^7] | Seqint(Setseq(Set(Sort(Intseq(n))))) eq 10 and Seqint(Sort((Intseq(n)))) eq n];
    
  • Maple
    seq(seq(10^(m+1)*(1-10^(-j))/9,j=1..m),m=1..20); # Robert Israel, Sep 02 2016
  • Mathematica
    Table[FromDigits@ Join[ConstantArray[1, #1], ConstantArray[0, #2]] & @@@ Transpose@ {#, n - #} &@ Range[n - 1], {n, 2, 9}] // Flatten (* Michael De Vlieger, Aug 30 2016 *)
    Flatten[Table[FromDigits[Join[PadRight[{},n,1],PadRight[{},k,0]]],{n,8},{k,8}]]//Sort (* Harvey P. Dale, Jan 09 2019 *)
  • PARI
    is(n) = vecmin(digits(n))==0 && vecmax(digits(n))==1 && digits(n)==vecsort(digits(n), , 4) \\ Felix Fröhlich, Aug 30 2016
    
  • PARI
    a(n) = my(r =  ceil((sqrt(1+8*n)+1)/2), k = n - binomial(r-1, 2));10^(r-k)*(10^(k)-1)/9
    \\ given an element n, computes the next element of the sequence.
    nxt(n) = my(d = digits(n), qd=#d, s = vecsum(d)); if(qd-s>1, n+10^(qd-s-1), 10^qd)
    \\ given an element n of the sequence, computes its place in the sequence.
    inv(n) = my(d = digits(n)); binomial(#d-1,2) + vecsum(d) \\ David A. Corneth, Aug 31 2016
    
  • Python
    from math import isqrt, comb
    def A276349(n): return 10*(10**(m:=isqrt(n<<3)+1>>1)-10**(comb(m+1,2)-n))//9 # Chai Wah Wu, Jun 16 2025

Formula

A227362(a(n)) = 10.
From Robert Israel, Sep 02 2016: (Start)
a((m^2-m)/2+j) = 10^(m+1)*(1-10^(-j))/9 for m>=1, 1<=j<=m.
a(n) = 10*(10^m - 10^(-n+m*(m+1)/2))/9 where m = A002024(n). (End)
A002275(A002260(n)) * 10^A004736(n) - Peter Kagey, Sep 02 2016
Sum_{n>=1} 1/a(n) = A073668. - Amiram Eldar, Feb 20 2022
a(n) = 10*A309761(n). - Chai Wah Wu, Jun 16 2025

A385290 Indices of records in A378865.

Original entry on oeis.org

1, 12, 24, 49, 101, 102, 497, 498, 499, 501, 1001, 1002, 2864, 4999, 5001, 10001, 10002, 10624, 12864, 18624, 27648, 123648, 249856, 442368, 786432, 1259874, 2159784, 8249175, 8759124, 10236587, 10236758, 10237649, 10239674, 10239786, 10268473, 10427539, 10476523
Offset: 1

Views

Author

Jinyuan Wang, Jun 24 2025

Keywords

Crossrefs

A306544 Any positive integer n has a smallest multiple consisting of a succession of 1's followed by a succession of 0's (A052983). This multiple is regarded as a binary number and a(n) is its conversion to base 10.

Original entry on oeis.org

2, 2, 14, 4, 2, 14, 126, 8, 1022, 2, 6, 28, 126, 126, 14, 16, 131070, 1022, 524286, 4, 126, 6, 8388606, 56, 4, 126, 268435454, 252, 536870910, 14, 65534, 32, 126, 131070, 126, 2044, 14, 524286, 126, 8, 62, 126, 4194302, 12, 1022, 8388606, 140737488355326, 112, 8796093022206
Offset: 1

Views

Author

Bernard Schott, Feb 22 2019

Keywords

Comments

For any odd number m not divisible by 5 (A045572), Euler's theorem (lcm(9*m,10) = 1, so 10^phi(9*m) == 1 (mod 9*m); i.e., 9*m | 10^d - 1 = 9*R_d with d = phi(9*m)) guarantees that the repunit R_d is always some multiple of m.
The numbers of the form 2^i*5^j with i, j >= 0 (A003592) clearly have a multiple equal to 10^r, for r = max(i,j).
These multiples of n end in a string of one or more 0's, so all the terms of this sequence are even.
The powers 2^k are fixed points of this sequence: the smallest multiple of 2^k consisting of a succession of 1's followed by a succession of 0's is 10^k, and 10^k in base 2 is 2^k in base 10.

Examples

			The smallest multiple of the integer 7 consisting of a succession of 1's followed by a succession of 0's is 1111110, and 1111110_2 = 126_10, so a(7) = 126. This is also the case for n=13, 14, 21, 26, 33, 35, 37, ...
		

Crossrefs

Extensions

More terms from Michel Marcus, Feb 28 2019
Showing 1-4 of 4 results.