cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A276348 a(n) = the smallest number k such that k*n is a number with a string of 1's followed by a string of 0's.

Original entry on oeis.org

10, 5, 370, 25, 2, 185, 158730, 125, 123456790, 1, 10, 925, 85470, 79365, 74, 625, 653594771241830, 61728395, 58479532163742690, 5, 52910, 5, 483091787439613526570, 4625, 4, 42735, 41152263374485596707818930, 396825, 383141762452107279693486590, 37
Offset: 1

Views

Author

Jaroslav Krizek, Aug 30 2016

Keywords

Comments

a(n) = the smallest number k such that k*n is a number from A276349.
a(n) > 0 for all n.

Examples

			For n=3; 3*370 = 1110 (term of A276349).
		

References

  • L. Pick, Dirichletovy šuplíčky. Pokroky matematiky, fyziky & astronomie; 2 (2016), 106-118. (In Czech; The Dirichlet pigeonhole principle)

Crossrefs

Programs

  • Magma
    a:=10; S:=[a]; for n in [2..6] do k:=0; flag:= true; while flag do k+:=1; if [k*n] subset [n: n in [1..10000] | Seqint(Setseq(Set(Sort(Intseq(n))))) eq 10 and Seqint(Sort((Intseq(n)))) eq n] then Append(~S, k); a:=k; flag:=false; end if; end while; end for; S;
  • Maple
    f:= proc(n) local b,c,d,m,q;
        b:= padic:-ordp(n,2); c:= padic:-ordp(n,5); if b+c=0 then d:= 1 else d:= max(b,c) fi; m:= n/2^b/5^c; q:= numtheory:-order(10,9*m);
         2^(d-b)*5^(d-c)*(10^q-1)/(9*m)
    end proc:
    map(f, [$1..100]); # Robert Israel, Aug 30 2016
  • Mathematica
    Table[k = 1; While[! If[Length@ # == 2, Flatten@ Map[Union, #] == {1, 0}, False] &@ Split@ IntegerDigits[k n], k++]; k, {n, 8}] (* Michael De Vlieger, Aug 30 2016 *)

Formula

a(n) = A052983(n)/n.
From Robert Israel, Aug 30 2016: (Start)
Let n = 2^b*5^c*m where GCD(m,10)=1, and q = A084680(9*m).
If b=c=0 let d=1, otherwise d=max(b,c).
Then a(n) = 2^(d-a)*5^(d-b)*(10^q-1)/(9*m). (End)

A309761 Numbers that are sums of consecutive powers of 10.

Original entry on oeis.org

1, 10, 11, 100, 110, 111, 1000, 1100, 1110, 1111, 10000, 11000, 11100, 11110, 11111, 100000, 110000, 111000, 111100, 111110, 111111, 1000000, 1100000, 1110000, 1111000, 1111100, 1111110, 1111111, 10000000, 11000000, 11100000, 11110000, 11111000, 11111100
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 15 2019

Keywords

Comments

Numbers of the form (10^i - 10^j)/9 with i > j.

Examples

			11100 = 10^2 + 10^3 + 10^4, so 11100 is in the sequence.
		

Crossrefs

Programs

  • Maple
    seq(seq((10^i-10^(i-j))/9, j=1..i),i=1..10); # Robert Israel, Aug 16 2019
  • Python
    from math import isqrt
    def A309761(n): return (10**(m:=isqrt(n<<3)+1>>1)-10**(m*(m+1)-(n<<1)>>1))//9 # Chai Wah Wu, Apr 04 2025

Formula

a(n) = A007088(A023758(n+1)).
a(i*(i-1)/2 + j) = (10^i - 10^(i-j))/9 for 1<=j<=i. - Robert Israel, Aug 16 2019
a(n) = A276349(n)/10. - Chai Wah Wu, Jun 16 2025

A306544 Any positive integer n has a smallest multiple consisting of a succession of 1's followed by a succession of 0's (A052983). This multiple is regarded as a binary number and a(n) is its conversion to base 10.

Original entry on oeis.org

2, 2, 14, 4, 2, 14, 126, 8, 1022, 2, 6, 28, 126, 126, 14, 16, 131070, 1022, 524286, 4, 126, 6, 8388606, 56, 4, 126, 268435454, 252, 536870910, 14, 65534, 32, 126, 131070, 126, 2044, 14, 524286, 126, 8, 62, 126, 4194302, 12, 1022, 8388606, 140737488355326, 112, 8796093022206
Offset: 1

Views

Author

Bernard Schott, Feb 22 2019

Keywords

Comments

For any odd number m not divisible by 5 (A045572), Euler's theorem (lcm(9*m,10) = 1, so 10^phi(9*m) == 1 (mod 9*m); i.e., 9*m | 10^d - 1 = 9*R_d with d = phi(9*m)) guarantees that the repunit R_d is always some multiple of m.
The numbers of the form 2^i*5^j with i, j >= 0 (A003592) clearly have a multiple equal to 10^r, for r = max(i,j).
These multiples of n end in a string of one or more 0's, so all the terms of this sequence are even.
The powers 2^k are fixed points of this sequence: the smallest multiple of 2^k consisting of a succession of 1's followed by a succession of 0's is 10^k, and 10^k in base 2 is 2^k in base 10.

Examples

			The smallest multiple of the integer 7 consisting of a succession of 1's followed by a succession of 0's is 1111110, and 1111110_2 = 126_10, so a(7) = 126. This is also the case for n=13, 14, 21, 26, 33, 35, 37, ...
		

Crossrefs

Extensions

More terms from Michel Marcus, Feb 28 2019
Showing 1-3 of 3 results.