cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276425 Sum of the even singletons in all partitions of n (n>=0). A singleton in a partition is a part that occurs exactly once.

Original entry on oeis.org

0, 0, 2, 2, 6, 8, 20, 26, 48, 66, 114, 154, 240, 326, 490, 656, 940, 1252, 1752, 2306, 3142, 4104, 5500, 7114, 9372, 12030, 15656, 19932, 25628, 32402, 41270, 51816, 65400, 81608, 102226, 126800, 157698, 194550, 240454, 295110, 362600, 442902, 541342, 658230
Offset: 0

Views

Author

Emeric Deutsch, Sep 14 2016

Keywords

Examples

			a(4) = 6 because in the partitions [1,1,1,1], [1,1,2], [2,2], [1,3], [4] the sums of the even singletons are 0, 2, 0, 0, 4, respectively; their sum is 6.
a(5) = 8 because in the partitions [1,1,1,1,1], [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4], [5] the sums of the even singletons are 0, 2, 0, 0, 2, 4, 0 respectively; their sum is 8.
		

Crossrefs

Programs

  • Maple
    g := 2*x^2*(1+x^2+x^4)/((1-x^4)^2*(product(1-x^i, i = 1 .. 120))): gser := series(g, x = 0, 60): seq(coeff(gser, x, n), n = 0 .. 50);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(i<1, 0, add((p-> p+`if`(i::even and j=1,
          [0, i*p[1]], 0))(b(n-i*j, i-1)), j=0..n/i)))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..50);  # Alois P. Heinz, Sep 14 2016
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i<1, 0, Sum[Function[p, p + If[EvenQ[i] && j == 1, {0, i*p[[1]]}, 0]][b[n-i*j, i-1]], {j, 0, n/i}]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 24 2016, after Alois P. Heinz *)

Formula

G.f.: g(x) = 2x^2*(1+x^2+x^4)/((1-x^4)^2 product(1-x^j, j>=1)).
a(n) = Sum(k*A276424(n,k), k>=0).
a(n) ~ 3^(3/2) * exp(Pi*sqrt(2*n/3)) / (16*Pi^2). - Vaclav Kotesovec, Jun 12 2025