A276422 Triangle read by rows: T(n,k) is the number of partitions of n for which the sum of its odd singletons is k (0<=k<=n). A singleton in a partition is a part that occurs exactly once.
1, 0, 1, 2, 0, 0, 1, 1, 0, 1, 4, 0, 0, 0, 1, 2, 2, 0, 2, 0, 1, 8, 0, 0, 1, 1, 0, 1, 4, 4, 0, 4, 0, 2, 0, 1, 14, 0, 0, 2, 2, 1, 1, 0, 2, 9, 6, 0, 7, 0, 4, 0, 2, 0, 2, 24, 1, 0, 4, 3, 2, 2, 1, 3, 0, 2, 16, 10, 0, 12, 0, 8, 0, 4, 1, 3, 0, 2, 41, 1, 0, 7, 5, 4, 4, 2, 6, 1, 3, 0, 3, 28, 16, 0, 20, 0, 14, 0, 8, 2, 6, 1, 3, 0, 3
Offset: 0
Examples
Row 4 is 4, 0, 0, 0, 1 because in the partitions [1,1,1,1], [1,1,2], [2,2], [1,3], [4] the sums of the odd singletons are 0, 0, 0, 4, 0, respectively. Row 5 is 2, 2, 0, 2, 0, 1 because in the partitions [1,1,1,1,1], [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4], [5] the sums of the odd singletons are 0, 0, 1, 3, 3, 1, 5, respectively. Triangle starts: 1; 0,1; 2,0,0; 1,1,0,1; 4,0,0,0,1; 2,2,0,2,0,1.
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Programs
-
Maple
g := Product(((1-x^(2*j-1))*(1+t^(2*j-1)*x^(2*j-1))+x^(4*j-2))/(1-x^j), j = 1 .. 100): gser := simplify(series(g, x = 0, 23)): for n from 0 to 20 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 20 do seq(coeff(P[n], t, i), i = 0 .. n) end do; # yields sequence in triangular form # second Maple program: b:= proc(n, i) option remember; expand( `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)* `if`(j=1 and i::odd, x^i, 1), j=0..n/i)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)): seq(T(n), n=0..14); # Alois P. Heinz, Sep 14 2016
-
Mathematica
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*If[j == 1 && OddQ[i], x^i, 1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Oct 04 2016, after Alois P. Heinz *)
Formula
G.f.: G(t,x) = Product(((1-x^{2j-1})(1+t^{2j-1}x^{2j-1}) + x^{4j-2})/(1-x^j), j=1..infinity).
Comments