cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A340793 Sequence whose partial sums give A000203.

Original entry on oeis.org

1, 2, 1, 3, -1, 6, -4, 7, -2, 5, -6, 16, -14, 10, 0, 7, -13, 21, -19, 22, -10, 4, -12, 36, -29, 11, -2, 16, -26, 42, -40, 31, -15, 6, -6, 43, -53, 22, -4, 34, -48, 54, -52, 40, -6, -6, -24, 76, -67, 36, -21, 26, -44, 66, -48, 48, -40, 10, -30, 108, -106, 34, 8
Offset: 1

Views

Author

Omar E. Pol, Jan 21 2021

Keywords

Comments

Essentially a duplicate of A053222.
Convolved with the nonzero terms of A000217 gives A175254, the volume of the stepped pyramid described in A245092.
Convolved with the nonzero terms of A046092 gives A244050, the volume of the stepped pyramid described in A244050.
Convolved with A000027 gives A024916.
Convolved with A000041 gives A138879.
Convolved with A000070 gives the nonzero terms of A066186.
Convolved with the nonzero terms of A002088 gives A086733.
Convolved with A014153 gives A182738.
Convolved with A024916 gives A000385.
Convolved with A036469 gives the nonzero terms of A277029.
Convolved with A091360 gives A276432.
Convolved with A143128 gives the nonzero terms of A000441.
For the correspondence between divisors and partitions see A336811.

Crossrefs

Programs

  • Maple
    a:= n-> (s-> s(n)-s(n-1))(numtheory[sigma]):
    seq(a(n), n=1..77);  # Alois P. Heinz, Jan 21 2021
  • Mathematica
    Join[{1}, Differences @ Table[DivisorSigma[1, n], {n, 1, 100}]] (* Amiram Eldar, Jan 21 2021 *)
  • PARI
    a(n) = if (n==1, 1, sigma(n)-sigma(n-1)); \\ Michel Marcus, Jan 22 2021

Formula

a(n) = A053222(n-1) for n>1. - Michel Marcus, Jan 22 2021

A277029 Convolution of A000203 and A000009.

Original entry on oeis.org

0, 1, 4, 8, 16, 25, 42, 61, 90, 130, 178, 242, 332, 436, 566, 747, 952, 1210, 1540, 1926, 2400, 2994, 3674, 4506, 5526, 6708, 8108, 9808, 11768, 14080, 16850, 20022, 23738, 28128, 33152, 39015, 45854, 53662, 62696, 73166, 85118, 98826, 114636, 132586, 153102
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 25 2016

Keywords

Comments

Apart from initial zero this is the convolution of A340793 and A036469. - Omar E. Pol, Feb 16 2021

Crossrefs

Cf. A066186 (convolution of A000203 and A000041).
Cf. A276432 (convolution of A000203 and A000219).

Programs

  • Mathematica
    Table[Sum[DivisorSigma[1, k] * PartitionsQ[n-k], {k,1,n}], {n,0,50}]
    nmax = 50; CoefficientList[Series[Sum[j*x^j/(1-x^j), {j, 1, nmax}]*Product[1+x^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{j>=1} (j*x^j/(1-x^j))*Product_{k>=1} (1+x^k).
a(n) ~ 2*n*A000009(n) ~ exp(Pi*sqrt(n/3)) * n^(1/4) / (2*3^(1/4)).
Showing 1-2 of 2 results.