A276454 a(n) = A276452(n) + A276451(n) + A276449(n).
1, 2, 22, 464, 13302, 487152, 21475652, 1106550392, 65221981530, 4327577893800, 319187492622012, 25904823495240144, 2294089575287710984, 220132629099295901408, 22751391952803426496488, 2519687900505935894639088, 297684761086123702744203918
Offset: 1
Examples
For n = 4 there are A276449(4) = 4 1-orbits, represented by + o o + o + o o o o + o o o o o o o o o o o o + + o o o o + + o o o o o + o o o o o o + o + + o + o o + o o + o o + o o o o o o . A276451(4) = 12 2-orbits: one of them is + o + o o o o + o o o o + o o o o o o o o o o + o + o + + o o o , and one can take the first one as representative. A276452(4) = 448 4-orbits: one of them is represented by + + + + o o o o o o o o o o o o . The complete orbit structure for n=4 is 1^4 2^12 4^448, see A276449(4) = 4, A276451(4) = 12, A276452(4) = 448. a(4) = 448 + 12 + 4 = 464. A014062(4) = 448*4 + 12*2 + 4*1 = 1820.
Links
- Hong-Chang Wang, Table of n, a(n) for n = 1..70
Programs
-
Mathematica
f[n_] := If[MemberQ[{2, 3}, #], 0, Function[i, Binomial[(2 i) (2 i + #), i]]@ Floor[n/4]] &@ Mod[n, 4];g[n_] := (Function[j, Binomial[2 j (j + Boole@ OddQ@ n), j]]@ Floor[n/2] - f@ n)/2; Table[(Binomial[n^2, n] - 2 g@ n - f@ n)/4 + (Function[j, Binomial[2 j (j + Boole@ OddQ@ n), j]]@ Floor[n/2] - f@ n)/2 + f@ n, {n, 17}] (* Michael De Vlieger, Sep 12 2016 *)
-
Python
from math import comb as binomial for j in range(1, 20): t = binomial(j * j, j) i = j // 2 if j % 2 == 0: d = binomial(2 * i * i, i) else: d = binomial(2 * i * (i + 1), i) a = (t - d) // 4 if j % 4 == 0: c = binomial((j * j // 4), (j // 4)) elif j % 4 == 1: c = binomial(((j - 1) // 2) * ((j - 1) // 2 + 1), ((j - 1) // 4)) else: c = 0 b = (d - c) // 2 print(str(j) + " " + str(a + b + c))
Formula
Extensions
Edited by Wolfdieter Lang, Oct 02 2016
Comments