cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276460 Numbers k such that for any positive integers a < b, if a * b = k then b - a is a square.

Original entry on oeis.org

0, 1, 2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 901, 1297, 1601, 2917, 3137, 4357, 5477, 7057, 8101, 8837, 10001, 12101, 13457, 14401, 15377, 15877, 16901, 17957, 20737, 21317, 22501, 24337, 25601, 28901, 30977, 32401, 33857, 41617, 42437, 44101, 50177, 52901
Offset: 1

Views

Author

Michel Lagneau, Sep 03 2016

Keywords

Comments

A majority of numbers are primes of form m^2+1 (A002496), and it appears that the composite numbers of the form m^2+1: 901, 10001, 20737, 75077, 234257, 266257, 276677, 571537,... are semiprimes.
For n >1, a(n)==1,5 mod 12 and a(n)==1,5 mod 16.

Examples

			901 is in the sequence because 901 = 1*901 = 17*53 => 901-1 = 30^2 and 53-17 = 6^2.
		

Crossrefs

Programs

  • Mathematica
    t={};Do[ds=Divisors[n];If[EvenQ[Length[ds]],ok=True;k=1;While[k<=Length[ds]/2&&(ok=IntegerQ[Sqrt[Abs[ds[[k]]-ds[[-k]]]]]),k++];If[ok,AppendTo[t,n]]],{n,2,10^5}];t
  • Python
    from _future_ import division
    from sympy import divisors
    from gmpy2 import is_square
    A276460_list = [0]
    for m in range(10**3):
        k = m**2+1
        for d in divisors(k):
            if d > m:
                A276460_list.append(k)
                break
            if not is_square(k//d - d):
                break # Chai Wah Wu, Sep 04 2016

Extensions

Terms 0, 1 added by Chai Wah Wu, Sep 04 2016