A276460 Numbers k such that for any positive integers a < b, if a * b = k then b - a is a square.
0, 1, 2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 901, 1297, 1601, 2917, 3137, 4357, 5477, 7057, 8101, 8837, 10001, 12101, 13457, 14401, 15377, 15877, 16901, 17957, 20737, 21317, 22501, 24337, 25601, 28901, 30977, 32401, 33857, 41617, 42437, 44101, 50177, 52901
Offset: 1
Keywords
Examples
901 is in the sequence because 901 = 1*901 = 17*53 => 901-1 = 30^2 and 53-17 = 6^2.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
t={};Do[ds=Divisors[n];If[EvenQ[Length[ds]],ok=True;k=1;While[k<=Length[ds]/2&&(ok=IntegerQ[Sqrt[Abs[ds[[k]]-ds[[-k]]]]]),k++];If[ok,AppendTo[t,n]]],{n,2,10^5}];t
-
Python
from _future_ import division from sympy import divisors from gmpy2 import is_square A276460_list = [0] for m in range(10**3): k = m**2+1 for d in divisors(k): if d > m: A276460_list.append(k) break if not is_square(k//d - d): break # Chai Wah Wu, Sep 04 2016
Extensions
Terms 0, 1 added by Chai Wah Wu, Sep 04 2016
Comments