cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276466 a(n) = numerator of Sum_{d|n} 0.d.

Original entry on oeis.org

1, 3, 2, 7, 3, 6, 4, 3, 13, 9, 21, 43, 23, 57, 21, 83, 27, 57, 29, 3, 131, 63, 33, 69, 17, 69, 157, 91, 39, 9, 41, 99, 21, 81, 33, 79, 47, 87, 23, 27, 51, 267, 53, 147, 12, 99, 57, 17, 129, 33, 27, 161, 63, 309, 63, 159, 29, 117, 69, 357, 71, 123, 71, 131, 69
Offset: 1

Views

Author

Jaroslav Krizek, Sep 04 2016

Keywords

Comments

Let d be a divisor of n; 0.d means the decimal fraction formed by writing d after the decimal point, e.g., 0.12 = 12/100 = 3/25.
The first few values of Sum_{d|n} 0.d for n = 1,2,.. are 1/10, 3/10, 2/5, 7/10, 3/5, 6/5, 4/5, 3/2, 13/10, 9/10, 21/100, 43/25, ...
16450 is the only number < 5*10^7 such that Sum_{d|n} 0.d is an integer: Sum_{d | 16450} 0.d = 0.1 + 0.2 + 0.5 + 0.7 + 0.10 + 0.14 + 0.25 + 0.35 + 0.47 + 0.50 + 0.70 + 0.94 + 0.175 + 0.235 + 0.329 + 0.350 + 0.470 + 0.658 + 0.1175 + 0.1645 + 0.2350 + 0.3290 + 0.8225 + 0.16450 = 9; see A276465.
No other term like 16450 up to 4*10^11. - Giovanni Resta, Apr 03 2019

Examples

			For n=12; Sum_{d | 12} 0.d = 0.1 + 0.2 + 0.3 + 0.4 + 0.6 + 0.12 = 1.72 = 172/100 = 43/25; a(12) = 43.
		

Crossrefs

Cf. A276465, A276467 (denominator).
Cf. A078267 and A078268 (both for 0.d).

Programs

  • Magma
    [Numerator(&+[d / (10^(#Intseq(d))): d in Divisors(n)]): n in [1..1000]]
    
  • Mathematica
    Table[Numerator@ Total@ (#*1/10^(1 + Floor@ Log10@ #)) &@ Divisors@ n, {n, 65}] (* Michael De Vlieger, Sep 04 2016 *)
  • PARI
    a(n) = numerator(sumdiv(n, d, d/10^(#Str(d)))); \\ Michel Marcus, Mar 29 2019
  • Python
    from fractions import Fraction
    from sympy import divisors
    def A276466(n):
        return sum(Fraction(d,10**len(str(d))) for d in divisors(n)).numerator # Chai Wah Wu, Sep 05 2016
    

Formula

a(n) = (Sum_{d | n} 0.d) * A276467(n).