A276508 a(n) = (2*5^n + 3*(-1)^(floor((n-1)/3)) + (-1)^n)/6.
0, 2, 9, 42, 208, 1041, 5208, 26042, 130209, 651042, 3255208, 16276041, 81380208, 406901042, 2034505209, 10172526042, 50862630208, 254313151041, 1271565755208, 6357828776042, 31789143880209, 158945719401042, 794728597005208, 3973642985026041, 19868214925130208, 99341074625651042
Offset: 0
Examples
Evolution from initial string "3": 3 -> 31213 -> 3121312321231321232131213 -> ... Therefore, number of 1’s at step n: a(0) = 0; a(1) = 2; a(2) = 9, etc.
Links
- Ilya Gutkovskiy, Illustration (substitution system {1 -> 12321, 2 -> 23132, 3 -> 31213})
- Eric Weisstein's World of Mathematics, Substitution System
- Index entries for linear recurrences with constant coefficients, signature (6,-6,5)
Programs
-
Maple
A276508:=n->(2*5^n + 3*(-1)^(floor((n-1)/3)) + (-1)^n)/6: seq(A276508(n), n=0..30); # Wesley Ivan Hurt, Sep 07 2016
-
Mathematica
Table[(2 5^n + 3 (-1)^Floor[(n - 1)/3] + (-1)^n)/6, {n, 0, 25}] LinearRecurrence[{6, -6, 5}, {0, 2, 9}, 26]
-
PARI
concat(0, Vec(x*(2-3*x)/((1-5*x)*(1-x+x^2)) + O(x^99))) \\ Altug Alkan, Sep 06 2016
Comments