A276530 a(n) = (a(n-1) * a(n-5) + a(n-3)^3) / a(n-6), a(0) = a(1) = ... = a(5) = 1.
1, 1, 1, 1, 1, 1, 2, 3, 4, 12, 39, 142, 1077, 21209, 779449, 106636837, 245010524697, 3336696488691229, 1125981890791313205482, 693480182652378523758257457499, 47660918720485535883730945247863294175948, 13387114027268508450553229985503810242341235794343085252
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..30
Programs
-
Mathematica
RecurrenceTable[{a[n] == (a[n - 1] a[n - 5] + a[n - 3]^3)/a[n - 6], a[0] == a[1] == a[2] == a[3] == a[4] == a[5] == 1}, a, {n, 0, 21}] (* Michael De Vlieger, Nov 16 2016 *) nxt[{a_,b_,c_,d_,e_,f_}]:={b,c,d,e,f,(f b+d^3)/a}; NestList[nxt,{1,1,1,1,1,1},25][[;;,1]] (* Harvey P. Dale, Apr 21 2023 *)
-
Ruby
def A(k, m, n) a = Array.new(2 * k, 1) ary = [1] while ary.size < n + 1 i = a[-1] * a[1] + a[k] ** m break if i % a[0] > 0 a = *a[1..-1], i / a[0] ary << a[0] end ary end def A276530(n) A(3, 3, n) end