cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A276534 a(n) = a(n-1) * a(n-4) * (a(n-2) * a(n-3) + 1) / a(n-5), with a(0) = a(1) = a(2) = a(3) = a(4) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 12, 108, 10584, 27454896, 94148851006224, 246222177535609206635748240, 62371770277951054762478578990896212287188931341600, 3750595553941161278345366267513070968239986992860645038477600300348697171928615364721752014400
Offset: 0

Views

Author

Seiichi Manyama, Nov 16 2016

Keywords

Comments

Inspired by Somos-5 sequence.
a(n) is an integer for n >= 0.
a(n+1)/a(n) is an integer for n >= 0.

Examples

			a(5) = a(4) * b(4) =  1 * 2 =   2,
a(6) = a(5) * b(5) =  2 * 2 =   4,
a(7) = a(6) * b(6) =  4 * 3 =  12,
a(8) = a(7) * b(7) = 12 * 9 = 108.
		

Crossrefs

Programs

  • Ruby
    def A(k, n)
      a = Array.new(2 * k + 1, 1)
      ary = [1]
      while ary.size < n + 1
        i = 0
        k.downto(1){|j|
          i += 1
          i *= a[j] * a[-j]
        }
        break if i % a[0] > 0
        a = *a[1..-1], i / a[0]
        ary << a[0]
      end
      ary
    end
    def A276534(n)
      A(2, n)
    end

Formula

a(n) * a(n-5) = a(n-1) * a(n-4) + a(n-1) * a(n-2) * a(n-3) * a(n-4).
a(4-n) = a(n).
Let b(n) = b(n-4) * (b(n-2) * (b(0) * b(1) * ... * b(n-3))^2 + 1) with b(0) = b(1) = b(2) = b(3) = 1, then a(n) = a(n-1) * b(n-1) = b(0) * b(1) * ... * b(n-1) for n > 0.
Showing 1-1 of 1 results.