A276535 a(n) = a(n-1) * a(n-6) * (a(n-2) * a(n-5) * (a(n-3) * a(n-4) + 1) + 1) / a(n-7), with a(0) = a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = 1.
1, 1, 1, 1, 1, 1, 1, 3, 9, 63, 2331, 4114215, 16341764835375, 266584861903285121344257375, 7896333852271846954822982651737848156847060737115875, 2309336603704915706429640788623787983392652603516450553629239932054220008270731649775618317371336467375
Offset: 0
Keywords
Examples
a(7) = a(6) * b(6) = 1 * 3 = 3, a(8) = a(7) * b(7) = 3 * 3 = 9, a(9) = a(8) * b(8) = 9 * 7 = 63, a(10) = a(9) * b(9) = 63 * 37 = 2331.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..18
Programs
-
Ruby
def A(k, n) a = Array.new(2 * k + 1, 1) ary = [1] while ary.size < n + 1 i = 0 k.downto(1){|j| i += 1 i *= a[j] * a[-j] } break if i % a[0] > 0 a = *a[1..-1], i / a[0] ary << a[0] end ary end def A276535(n) A(3, n) end
Formula
a(n) * a(n-7) = a(n-1) * a(n-6) + a(n-1) * a(n-2) * a(n-5) * a(n-6) + a(n-1) * a(n-2) * a(n-3) * a(n-4) * a(n-5) * a(n-6).
a(6-n) = a(n).
Let b(n) = b(n-6) * (b(n-2) * b(n-3) * b(n-4) * (b(0) * b(1) * ... * b(n-5))^2 * (b(n-3) * (b(0) * b(1) * ... * b(n-4))^2 + 1)+ 1) with b(0) = b(1) = b(2) = b(3) = b(4) = b(5) = 1, then a(n) = a(n-1) * b(n-1) = b(0) * b(1) * ... * b(n-1) for n > 0.
Comments