cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A276543 Triangle read by rows: T(n,k) = number of primitive (period n) n-bead bracelet structures using exactly k different colored beads.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 5, 2, 1, 0, 5, 13, 11, 3, 1, 0, 8, 31, 33, 16, 3, 1, 0, 14, 80, 136, 85, 27, 4, 1, 0, 21, 201, 478, 434, 171, 37, 4, 1, 0, 39, 533, 1849, 2270, 1249, 338, 54, 5, 1, 0, 62, 1401, 6845, 11530, 8389, 3056, 590, 70, 5, 1
Offset: 1

Views

Author

Andrew Howroyd, Apr 09 2017

Keywords

Comments

Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure.

Examples

			Triangle starts:
  1
  0  1
  0  1   1
  0  2   2    1
  0  3   5    2    1
  0  5  13   11    3    1
  0  8  31   33   16    3   1
  0 14  80  136   85   27   4  1
  0 21 201  478  434  171  37  4 1
  0 39 533 1849 2270 1249 338 54 5 1
  ...
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Partial row sums include A000046, A056362, A056363, A056364, A056365.
Row sums are A276548.

Programs

  • PARI
    \\ Ach is A304972 and R is A152175 as square matrices.
    Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
    R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
    T(n)={my(M=(R(n)+Ach(n))/2); Mat(vectorv(n,n,sumdiv(n, d, moebius(d)*M[n/d,])))}
    { my(A=T(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 20 2019

Formula

T(n, k) = Sum_{d|n} mu(n/d) * A152176(d, k).

A328035 Number of length n primitive (period n) bracelet structures which are not periodic palindromes using an infinite alphabet.

Original entry on oeis.org

0, 0, 1, 2, 7, 23, 78, 311, 1297, 6200, 31747, 178703, 1070388, 6842898, 46158435, 327718768, 2437732593, 18948528721, 153498234770, 1293122838953, 11306474635818, 102425551817363, 959826751122645, 9290811889272509, 92771812680385087, 954447072777977556
Offset: 1

Views

Author

Andrew Howroyd, Oct 02 2019

Keywords

Comments

Equivalently, the number of length n bracelet structures that do not have any symmetry under the action of the dihedral group. The corresponding sequence for necklace structures that do not have any symmetry under the action of the cyclic group is A060223.

Examples

			For n = 5, the 7 bracelet structures have the patterns AAABC, AABAC, AABBC, ABABC, AABCD, ABACD, ABCDE.
		

Crossrefs

Row sums of A309784.

Programs

  • PARI
    \\ Requires T from A309784.
    seq(n)={my(A=T(n)); vector(n, i, vecsum(A[i, ]))}

Formula

a(n) = A276548(n) - A285042(n).
Showing 1-2 of 2 results.