cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276559 Expansion of Sum_{k>=1} k^2*x^k^2/(1 - x^k^2) * Product_{k>=1} 1/(1 - x^k^2).

Original entry on oeis.org

1, 2, 3, 8, 10, 12, 14, 24, 36, 40, 44, 60, 78, 84, 90, 128, 153, 180, 190, 240, 273, 308, 322, 384, 475, 520, 567, 644, 754, 810, 868, 992, 1122, 1258, 1330, 1548, 1702, 1862, 1950, 2200, 2460, 2646, 2838, 3124, 3510, 3726, 3948, 4320, 4802, 5200, 5457, 6032, 6572, 7128, 7425, 8064, 8778, 9454, 9971, 10680
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 10 2017

Keywords

Comments

Sum of all parts of all partitions of n into squares.
Convolution of the sequences A001156 and A035316.

Examples

			a(8) = 24 because we have [4, 4], [4, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1] and 3*8 = 24.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n], (s->
          `if`(s>n, 0, (p->p+[0, p[1]*s])(b(n-s, i))))(i^2)+b(n, i-1))
        end:
    a:= n-> b(n, isqrt(n))[2]:
    seq(a(n), n=1..70);  # Alois P. Heinz, Sep 19 2018
  • Mathematica
    nmax = 60; Rest[CoefficientList[Series[Sum[k^2 x^k^2/(1 - x^k^2), {k, 1, nmax}] Product[1/(1 - x^k^2), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 60; Rest[CoefficientList[Series[x D[Product[1/(1 - x^k^2), {k, 1, nmax}], x], {x, 0, nmax}], x]]

Formula

G.f.: Sum_{k>=1} k^2*x^k^2/(1 - x^k^2) * Product_{k>=1} 1/(1 - x^k^2).
G.f.: x*f'(x), where f(x) = Product_{k>=1} 1/(1 - x^k^2).
a(n) = n * A001156(n).
a(n) = n * Sum_{k=1..n} A243148(n,k). - Alois P. Heinz, Sep 19 2018