A276562 Array read by antidiagonals: T(m,n) = number of m-ary words of length n with cyclically adjacent elements differing by 1 or less.
1, 1, 2, 1, 4, 3, 1, 8, 7, 4, 1, 16, 15, 10, 5, 1, 32, 35, 22, 13, 6, 1, 64, 83, 54, 29, 16, 7, 1, 128, 199, 134, 73, 36, 19, 8, 1, 256, 479, 340, 185, 92, 43, 22, 9, 1, 512, 1155, 872, 481, 236, 111, 50, 25, 10, 1, 1024, 2787, 2254, 1265, 622, 287, 130, 57, 28, 11
Offset: 1
Examples
Array starts: 1 1 1 1 1 1 1 1 1 1 ... 2 4 8 16 32 64 128 256 512 1024 ... 3 7 15 35 83 199 479 1155 2787 6727 ... 4 10 22 54 134 340 872 2254 5854 15250 ... 5 13 29 73 185 481 1265 3361 8993 24193 ... 6 16 36 92 236 622 1658 4468 12132 33146 ... 7 19 43 111 287 763 2051 5575 15271 42099 ... 8 22 50 130 338 904 2444 6682 18410 51052 ... 9 25 57 149 389 1045 2837 7789 21549 60005 ... 10 28 64 168 440 1186 3230 8896 24688 68958 ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Arnold Knopfmacher, Toufik Mansour, Augustine Munagi, Helmut Prodinger, Smooth words and Chebyshev polynomials, arXiv:0809.0551v1 [math.CO], 2008.
Crossrefs
Programs
-
Mathematica
T[m_, n_] := Sum[(1 + 2*Cos[j*Pi/(m+1)])^n, {j, 1, m}] // FullSimplify; Table[T[m-n+1, n], {m, 1, 11}, {n, m, 1, -1}] // Flatten (* Jean-François Alcover, Jun 06 2017 *)
-
PARI
\\ from Knopfmacher et al. ChebyshevU(n,x) = sum(i=0, n/2, 2*poltchebi(n-2*i,x)) + (n%2-1); RowGf(k,x) = 1 + (k*x*(1+3*x) - 2*(k+1)*x*subst(ChebyshevU(k-1,z)/ChebyshevU(k,z),z,(1-x)/(2*x)))/((1+x)*(1-3*x)); a(m,n)=Vec(RowGf(m,x)+O(x^(n+1)))[n+1]; for(m=1, 10, print(RowGf(m,x))); for(m=1, 10, for(n=1, 9, print1( a(m,n), ", ") ); print(); );
Formula
T(m, n) = Sum_{j=1..m} (1 + 2*cos(j*pi/(m+1)))^n. - Andrew Howroyd, Apr 15 2017
Comments