cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276593 Denominator of the rational part of the sum of reciprocals of even powers of odd numbers, i.e., Sum_{k>=1} 1/(2*k-1)^(2*n).

Original entry on oeis.org

8, 96, 960, 161280, 2903040, 638668800, 49816166400, 83691159552000, 2845499424768000, 1946321606541312000, 408727537373675520000, 48662619743783485440000, 124089680346647887872000000, 174221911206693634572288000000, 70734095949917615636348928000000
Offset: 1

Views

Author

Martin Renner, Sep 07 2016

Keywords

Comments

A276592(n)/a(n) * Pi^(2*n) = Sum_{k>=1} 1/(2*k-1)^(2*n) > 1. So Pi^(2*n) > a(n)/A276592(n). - Seiichi Manyama, Sep 03 2018

Examples

			From _Seiichi Manyama_, Sep 03 2018: (Start)
n |    Pi^(2*n)   |   a(n)/A276592(n)
--+---------------+------------------------------------
1 |        9.8... |           8
2 |       97.4... |          96
3 |      961.3... |         960
4 |     9488.5... |      161280/17     =     9487.0...
5 |    93648.0... |     2903040/31     =    93646.4...
6 |   924269.1... |   638668800/691    =   924267.4...
7 |  9122171.1... | 49816166400/5461   =  9122169.2... (End)
		

Crossrefs

Programs

  • Maple
    seq(denom(sum(1/(2*k-1)^(2*n),k=1..infinity)/Pi^(2*n)),n=1..22);
  • Mathematica
    a[n_]:=Denominator[(1-2^(-2 n)) Zeta[2 n]] (* Steven Foster Clark, Mar 10 2023 *)
    a[n_]:=Denominator[1/2 SeriesCoefficient[1/(E^x+1),{x,0,2 n-1}]] (* Steven Foster Clark, Mar 10 2023 *)
    a[n_]:=Denominator[1/2 Residue[Zeta[s] Gamma[s] (1-2^(1-s)) x^(-s),{s,1-2 n}]] (* Steven Foster Clark, Mar 11 2023 *)

Formula

A276592(n)/a(n) + A276594(n)/A276595(n) = A046988(n)/A002432(n).
A276592(n)/a(n) = (-1)^(n+1) * B_{2*n} * (2^(2*n) - 1) / (2 * (2*n)!), where B_n is the Bernoulli number. - Seiichi Manyama, Sep 03 2018