A276593 Denominator of the rational part of the sum of reciprocals of even powers of odd numbers, i.e., Sum_{k>=1} 1/(2*k-1)^(2*n).
8, 96, 960, 161280, 2903040, 638668800, 49816166400, 83691159552000, 2845499424768000, 1946321606541312000, 408727537373675520000, 48662619743783485440000, 124089680346647887872000000, 174221911206693634572288000000, 70734095949917615636348928000000
Offset: 1
Examples
From _Seiichi Manyama_, Sep 03 2018: (Start) n | Pi^(2*n) | a(n)/A276592(n) --+---------------+------------------------------------ 1 | 9.8... | 8 2 | 97.4... | 96 3 | 961.3... | 960 4 | 9488.5... | 161280/17 = 9487.0... 5 | 93648.0... | 2903040/31 = 93646.4... 6 | 924269.1... | 638668800/691 = 924267.4... 7 | 9122171.1... | 49816166400/5461 = 9122169.2... (End)
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..225
Programs
-
Maple
seq(denom(sum(1/(2*k-1)^(2*n),k=1..infinity)/Pi^(2*n)),n=1..22);
-
Mathematica
a[n_]:=Denominator[(1-2^(-2 n)) Zeta[2 n]] (* Steven Foster Clark, Mar 10 2023 *) a[n_]:=Denominator[1/2 SeriesCoefficient[1/(E^x+1),{x,0,2 n-1}]] (* Steven Foster Clark, Mar 10 2023 *) a[n_]:=Denominator[1/2 Residue[Zeta[s] Gamma[s] (1-2^(1-s)) x^(-s),{s,1-2 n}]] (* Steven Foster Clark, Mar 11 2023 *)
Comments