cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276600 Values of m such that m^2 + 6 is a triangular number (A000217).

Original entry on oeis.org

0, 2, 3, 7, 15, 20, 42, 88, 117, 245, 513, 682, 1428, 2990, 3975, 8323, 17427, 23168, 48510, 101572, 135033, 282737, 592005, 787030, 1647912, 3450458, 4587147, 9604735, 20110743, 26735852, 55980498, 117214000, 155827965, 326278253, 683173257, 908231938
Offset: 1

Views

Author

Colin Barker, Sep 07 2016

Keywords

Comments

2*a(n+2) gives the y members of all positive solutions (x(n), y(n)), proper and improper, of the Pell equation x^2 - 2*y^2 = 7^2, n >= 0. The corresponding x members are x(n) = A106525(n). - Wolfdieter Lang, Sep 29 2016

Examples

			7 is in the sequence because 7^2 + 6 = 55, which is a triangular number.
		

Crossrefs

Cf. A001109 (k=0), A106328 (k=1), A077241 (k=2), A276598 (k=3), A276599 (k=5), A276601 (k=9), A276602 (k=10), where k is the value added to n^2.

Programs

  • Magma
    I:=[0,2,3,7,15,20]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..41]]; // G. C. Greubel, Sep 15 2021
    
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1}, {0,2,3,7,15,20}, 41] (* G. C. Greubel, Sep 15 2021 *)
  • PARI
    concat(0, Vec(x^2*(2+3*x+7*x^2+3*x^3+2*x^4)/(1-6*x^3+x^6) + O(x^40)))
    
  • Sage
    def A276600_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^2*(2+3*x+7*x^2+3*x^3+2*x^4)/(1-6*x^3+x^6) ).list()
    a=A276600_list(41); a[1:] # G. C. Greubel, Sep 15 2021

Formula

a(n) = 6*a(n-3) - a(n-6) for n>6.
G.f.: x^2*(2 + 3*x + 7*x^2 + 3*x^3 + 2*x^4)/(1 - 6*x^3 + x^6).
From Wolfdieter Lang, Sep 29 2016: (Start)
Trisection:
a(2+3*n) = 15*S(n-1,6) - 2*S(n-2,6) = A275794(n),
a(3+3*n) = 20*S(n-1,6) - 3*S(n-2,6) = A275796(n),
a(4+3*n) = 7*(6*S(n-1,6) - S(n-2,6)) = 7*A001109(n+1) for n >= 0, with the Chebyshev polynomials S(n, 6) = A001109(n+1), n >= -1, with S(-2, 6) = -1.
(End)