cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A276934 Row 3 of A276616: a(n) = A276933(n) / 6.

Original entry on oeis.org

1, 5, 8, 9, 21, 25, 28, 29, 41, 45, 48, 49, 60, 61, 64, 65, 68, 69, 121, 125, 128, 129, 141, 145, 148, 149, 161, 165, 168, 169, 180, 181, 184, 185, 188, 189, 241, 245, 248, 249, 261, 265, 268, 269, 281, 285, 288, 289, 300, 301, 304, 305, 308, 309, 361, 365, 368, 369, 381, 385, 388, 389, 401, 405, 408, 409, 420, 421, 424
Offset: 0

Views

Author

Antti Karttunen, Sep 23 2016

Keywords

Comments

Starting offset is 0 (with a(0) = 2) to match with the starting offset of A276933 and A273670.

Crossrefs

Row 3 of A276616, column 3 of A276617.

Programs

Formula

a(n) = A276933(n) / 6.

A276931 Row 2 of A276616: a(n) = A276932(n)/2.

Original entry on oeis.org

1, 4, 6, 7, 13, 16, 18, 19, 25, 28, 30, 31, 36, 37, 39, 40, 42, 43, 61, 64, 66, 67, 73, 76, 78, 79, 85, 88, 90, 91, 96, 97, 99, 100, 102, 103, 121, 124, 126, 127, 133, 136, 138, 139, 145, 148, 150, 151, 156, 157, 159, 160, 162, 163, 181, 184, 186, 187, 193, 196, 198, 199, 205, 208, 210, 211, 216, 217, 219, 220, 222
Offset: 0

Views

Author

Antti Karttunen, Sep 22 2016

Keywords

Comments

Starting offset is 0 (with a(0) = 1) to match with the starting offset of A276932 and A273670.

Crossrefs

Row 2 of A276616, column 2 of A276617.

Formula

a(n) = A276932(n)/2.

A276953 Square array A(row,col) read by antidiagonals: A(1,col) = A273670(col-1), and for row > 1, A(row,col) = A153880(A(row-1,col)); Dispersion of factorial base shift A153880 (array transposed).

Original entry on oeis.org

1, 3, 2, 4, 8, 6, 5, 12, 30, 24, 7, 14, 48, 144, 120, 9, 26, 54, 240, 840, 720, 10, 32, 126, 264, 1440, 5760, 5040, 11, 36, 150, 744, 1560, 10080, 45360, 40320, 13, 38, 168, 864, 5160, 10800, 80640, 403200, 362880, 15, 50, 174, 960, 5880, 41040, 85680, 725760, 3991680, 3628800, 16, 56, 246, 984, 6480, 46080, 367920, 766080, 7257600, 43545600, 39916800
Offset: 1

Views

Author

Antti Karttunen, Sep 22 2016

Keywords

Comments

The array A(row,col) is read by descending antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
Entries on row n are all multiples of n!. Dividing that factor out gives another array A276616.

Examples

			The top left corner of the array:
    1,    3,     4,     5,     7,     9,    10,    11,    13,    15,    16
    2,    8,    12,    14,    26,    32,    36,    38,    50,    56,    60
    6,   30,    48,    54,   126,   150,   168,   174,   246,   270,   288
   24,  144,   240,   264,   744,   864,   960,   984,  1464,  1584,  1680
  120,  840,  1440,  1560,  5160,  5880,  6480,  6600, 10200, 10920, 11520
  720, 5760, 10080, 10800, 41040, 46080, 50400, 51120, 81360, 86400, 90720
		

Crossrefs

Inverse permutation: A276954.
Transpose: A276955.
Cf. A276949 (index of row where n appears), A276951 (index of column).
Row 1: A273670, Row 2: A276932, Row 3: A276933.
Column 1: A000142. For other columns, see the rows of transposed array A276955.
Related or similar permutations: A257503, A275848, A273666.
Cf. also arrays A276616, A276589 & A276943.

Programs

Formula

A(1,col) = A273670(col-1), and for row > 1, A(row,col) = A153880(A(row-1,col))
As a composition of other permutations:
a(n) = A275848(A257503(n)).
Other identities. For all n >= 1:
A(A276949(n),A276951(n)) = n.

A286623 Square array A(n,k) = A276943(n,k)/A002110(n-1), read by descending antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

Original entry on oeis.org

1, 3, 1, 4, 4, 1, 5, 6, 6, 1, 7, 7, 10, 8, 1, 9, 16, 11, 14, 12, 1, 10, 19, 36, 15, 22, 14, 1, 11, 21, 41, 78, 23, 26, 18, 1, 13, 22, 45, 85, 144, 27, 34, 20, 1, 15, 31, 46, 91, 155, 222, 35, 38, 24, 1, 16, 34, 71, 92, 165, 235, 324, 39, 46, 30, 1, 17, 36, 76, 155, 166, 247, 341, 438, 47, 58, 32, 1, 18, 37, 80, 162, 287, 248, 357, 457, 668, 59, 62, 38, 1
Offset: 1

Views

Author

Antti Karttunen, Jun 28 2017

Keywords

Examples

			The top left 12 X 12 corner of the array:
  1,  3,  4,  5,    7,    9,   10,   11,   13,   15,   16,   17
  1,  4,  6,  7,   16,   19,   21,   22,   31,   34,   36,   37
  1,  6, 10, 11,   36,   41,   45,   46,   71,   76,   80,   81
  1,  8, 14, 15,   78,   85,   91,   92,  155,  162,  168,  169
  1, 12, 22, 23,  144,  155,  165,  166,  287,  298,  308,  309
  1, 14, 26, 27,  222,  235,  247,  248,  443,  456,  468,  469
  1, 18, 34, 35,  324,  341,  357,  358,  647,  664,  680,  681
  1, 20, 38, 39,  438,  457,  475,  476,  875,  894,  912,  913
  1, 24, 46, 47,  668,  691,  713,  714, 1335, 1358, 1380, 1381
  1, 30, 58, 59,  900,  929,  957,  958, 1799, 1828, 1856, 1857
  1, 32, 62, 63, 1148, 1179, 1209, 1210, 2295, 2326, 2356, 2357
  1, 38, 74, 75, 1518, 1555, 1591, 1592, 3035, 3072, 3108, 3109
		

Crossrefs

Transpose: A286625.
Row 1: A276155.
Column 1: A000012, Column 2: A008864, Column 3: A100484, Column 4: A072055, Column 5: A023523 (from its second term onward), Column 6: A286624 (= 1 + A123134), Column 11: 2*A123134, Column 13: 3*A006094.
Cf. A276616 (analogous array).

Programs

Formula

A(n,k) = A276943(n, k) / A002110(n-1).

A276617 Square array A(n,k) = A276955(n,k)/k!, read by descending antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

Original entry on oeis.org

1, 1, 3, 1, 4, 4, 1, 5, 6, 5, 1, 6, 8, 7, 7, 1, 7, 10, 9, 13, 9, 1, 8, 12, 11, 21, 16, 10, 1, 9, 14, 13, 31, 25, 18, 11, 1, 10, 16, 15, 43, 36, 28, 19, 13, 1, 11, 18, 17, 57, 49, 40, 29, 25, 15, 1, 12, 20, 19, 73, 64, 54, 41, 41, 28, 16, 1, 13, 22, 21, 91, 81, 70, 55, 61, 45, 30, 17, 1, 14, 24, 23, 111, 100, 88, 71, 85, 66, 48, 31, 18
Offset: 1

Views

Author

Antti Karttunen, Sep 22 2016

Keywords

Examples

			The top left corner of the array:
1,  1,  1,  1,  1,  1,  1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1
3,  4,  5,  6,  7,  8,  9,  10,  11,  12,  13,  14,  15,  16,  17,  18,  19
4,  6,  8, 10, 12, 14, 16,  18,  20,  22,  24,  26,  28,  30,  32,  34,  36
5,  7,  9, 11, 13, 15, 17,  19,  21,  23,  25,  27,  29,  31,  33,  35,  37
7, 13, 21, 31, 43, 57, 73,  91, 111, 133, 157, 183, 211, 241, 273, 307, 343
9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361
		

Crossrefs

Transpose: A276616.
Columns 1-3: A273670, A276931, A276934.
Row 1: A000012, Row 2: n+2, Row 3: 2n+2, Row 4: 2n+3 (for n >= 1).
Row 5: A002061 (from a(3)=7 onward).
Row 6: squares (A000290, from a(3)=9 onward).
Row 7: A028552 (from a(2)=10 onward).
Row 8: A028387 (from a(2)=11 onward).

Programs

Formula

A(n,k) = A276955(n,k)/k!
Showing 1-5 of 5 results.