cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A100484 The primes doubled; Even semiprimes.

Original entry on oeis.org

4, 6, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 106, 118, 122, 134, 142, 146, 158, 166, 178, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482, 502, 514, 526
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 22 2004

Keywords

Comments

Essentially the same as A001747.
Right edge of the triangle in A065342. - Reinhard Zumkeller, Jan 30 2012
A253046(a(n)) > a(n). - Reinhard Zumkeller, Dec 26 2014
Apart from first term, these are the tau2-primes as defined in [Anderson, Frazier] and [Lanterman]. - Michel Marcus, May 15 2019
For every positive integer b and each m in this sequence b^(m-1) == b (mod m). - Florian Baur, Nov 26 2021

Crossrefs

Subsequence of A091376. After the initial 4 also a subsequence of A039956.
Cf. A001748, A253046, A353478 (characteristic function).
Row 3 of A286625, column 3 of A286623.

Programs

Formula

a(n) = 2 * A000040(n).
a(n) = A001747(n+1).
n>1: A000005(a(n)) = 4; A000203(a(n)) = 3*A008864(n); A000010(a(n)) = A006093(n); intersection of A001358 and A005843.
a(n) = A116366(n-1, n-1) for n>1. - Reinhard Zumkeller, Feb 06 2006
a(n) = A077017(n+1), n>1. - R. J. Mathar, Sep 02 2008
A078834(a(n)) = A000040(n). - Reinhard Zumkeller, Sep 19 2011
a(n) = A087112(n, 1). - Reinhard Zumkeller, Nov 25 2012
A000203(a(n)) = 3*n/2 + 3, n > 1. - Wesley Ivan Hurt, Sep 07 2013

Extensions

Simpler definition.

A008864 a(n) = prime(n) + 1.

Original entry on oeis.org

3, 4, 6, 8, 12, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 54, 60, 62, 68, 72, 74, 80, 84, 90, 98, 102, 104, 108, 110, 114, 128, 132, 138, 140, 150, 152, 158, 164, 168, 174, 180, 182, 192, 194, 198, 200, 212, 224, 228, 230, 234, 240, 242, 252, 258, 264, 270, 272, 278, 282, 284
Offset: 1

Views

Author

Keywords

Comments

Sum of divisors of prime(n). - Labos Elemer, May 24 2001
For n > 1, there are a(n) more nonnegative Hurwitz quaternions than nonnegative Lipschitz quaternions, which are counted in A239396 and A239394, respectively. - T. D. Noe, Mar 31 2014
These are the numbers which are in A239708 or in A187813, but excluding the first 3 terms of A187813, i.e., a number m is a term if and only if m is a term > 2 of A187813, or m is the sum of two distinct powers of 2 such that m - 1 is prime. This means that a number m is a term if and only if m is a term > 2 such that there is no base b with a base-b digital sum of b, or b = 2 is the only base for which the base-b digital sum of m is b. a(6) is the only term such that a(n) = A187813(n); for n < 6, we have a(n) > A187813(n), and for n > 6, we have a(n) < A187813(n). - Hieronymus Fischer, Apr 10 2014
Does not contain any number of the format 1 + q + ... + q^e, q prime, e >= 2, i.e., no terms of A060800, A131991, A131992, A131993 etc. [Proof: that requires 1 + p = 1 + q + ... + q^e, or p = q*(1 + ... + q^(e-1)). This is not solvable because the left hand side is prime, the right hand side composite.] - R. J. Mathar, Mar 15 2018
1/a(n) is the asymptotic density of numbers whose prime(n)-adic valuation is odd. - Amiram Eldar, Jan 23 2021

References

  • C. W. Trigg, Problem #1210, Series Formation, J. Rec. Math., 15 (1982), 221-222.

Crossrefs

Column 1 of A341605, column 2 of A286623 and of A328464.
Partial sums of A125266.

Programs

Formula

a(n) = prime(n) + 1 = A000040(n) + 1.
a(n) = A000005(A034785(n)) = A000203(A000040(n)). - Labos Elemer, May 24 2001
a(n) = A084920(n) / A006093(n). - Reinhard Zumkeller, Aug 06 2007
A239703(a(n)) <= 1. - Hieronymus Fischer, Apr 10 2014
From Ilya Gutkovskiy, Jul 30 2016: (Start)
a(n) ~ n*log(n).
Product_{n>=1} (1 + 2/(a(n)*(a(n) - 2))) = 5/2. (End)

A072055 a(n) = 2*prime(n)+1.

Original entry on oeis.org

5, 7, 11, 15, 23, 27, 35, 39, 47, 59, 63, 75, 83, 87, 95, 107, 119, 123, 135, 143, 147, 159, 167, 179, 195, 203, 207, 215, 219, 227, 255, 263, 275, 279, 299, 303, 315, 327, 335, 347, 359, 363, 383, 387, 395, 399, 423, 447, 455, 459, 467, 479
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 11 2002

Keywords

Crossrefs

One less than A089241. After the initial term equal to A166496.
Row 4 of A286625, column 4 of A286623.

Programs

Formula

a(n) = A089241(n)-1.

A276154 a(n) = Shift primorial base representation (A049345) of n left by one digit (append one zero to the right, then convert back to decimal).

Original entry on oeis.org

0, 2, 6, 8, 12, 14, 30, 32, 36, 38, 42, 44, 60, 62, 66, 68, 72, 74, 90, 92, 96, 98, 102, 104, 120, 122, 126, 128, 132, 134, 210, 212, 216, 218, 222, 224, 240, 242, 246, 248, 252, 254, 270, 272, 276, 278, 282, 284, 300, 302, 306, 308, 312, 314, 330, 332, 336, 338, 342, 344, 420, 422, 426, 428, 432, 434, 450, 452, 456, 458, 462, 464, 480, 482, 486, 488
Offset: 0

Views

Author

Antti Karttunen, Aug 24 2016

Keywords

Examples

			   n   A049345  with one zero           converted back
                appended to the right   to decimal = a(n)
---------------------------------------------------------
   0       0            00                     0
   1       1            10                     2
   2      10           100                     6
   3      11           110                     8
   4      20           200                    12
   5      21           210                    14
   6     100          1000                    30
   7     101          1010                    32
   8     110          1100                    36
   9     111          1110                    38
  10     120          1200                    42
  11     121          1210                    44
  12     200          2000                    60
  13     201          2010                    62
  14     210          2100                    66
  15     211          2110                    68
  16     220          2200                    72
		

Crossrefs

Complement: A276155.
Cf. A002110, A003961, A049345, A276085, A276086, A276151, A276152, A286629 [= a(A061720(n-1))], A324384 [= gcd(n, a(n))], A323879, A328770 (a subsequence).
Cf. also A276156, A328461, A328464.
Dispersion array and its transpose: A276943, A276945, with primorials divided out: A286623, A286625.
Analogous to A153880.

Programs

  • Mathematica
    nn = 75; b = MixedRadix[Reverse@ Prime@ NestWhileList[# + 1 &, 1, Times @@ Prime@ Range[#] <= nn &]]; Table[FromDigits[#, b] &@ Append[IntegerDigits[n, b], 0], {n, 0, nn}] (* Version 10.2, or *)
    f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[Total[Times @@@ Transpose@ {Map[Times @@ # &, Prime@ Range@ Range[0, Length@ # - 1]], Reverse@ #}] &@ Append[f@ n, 0], {n, 0, 75}] (* Michael De Vlieger, Aug 26 2016 *)
  • PARI
    A276154(n) = A276085(A003961(A276086(n))); \\ Antti Karttunen, Mar 15 2021
    
  • PARI
    A276151(n) = { my(s=1); forprime(p=2, , if(n%p, return(n-s), s *= p)); };
    A276152(n) = { my(s=1); forprime(p=2, , if(n%p, return(s*p), s *= p)); };
    A276154(n) = if(!n,n,(A276152(n) + A276154(A276151(n)))); \\ Antti Karttunen, Mar 15 2021
    
  • Scheme
    (definec (A276154 n) (if (zero? n) n (+ (A276152 n) (A276154 (A276151 n)))))

Formula

a(0) = 0; for n >= 1, a(n) = A276152(n) + a(A276151(n)).
a(n) = A276085(A003961(A276086(n))). - Antti Karttunen, Mar 15 2021

A023523 a(n) = prime(n)*prime(n-1) + 1.

Original entry on oeis.org

3, 7, 16, 36, 78, 144, 222, 324, 438, 668, 900, 1148, 1518, 1764, 2022, 2492, 3128, 3600, 4088, 4758, 5184, 5768, 6558, 7388, 8634, 9798, 10404, 11022, 11664, 12318, 14352, 16638, 17948, 19044, 20712, 22500, 23708, 25592, 27222, 28892
Offset: 1

Views

Author

Keywords

Comments

This sequence assumes prime(0) = 1.

Crossrefs

From a(2) = 7 onward, column 5 of A286623, column 3 of A328464.

Programs

  • Haskell
    a023523 n = a023523_list !! (n-1)
    a023523_list =  map (+ 1) $ zipWith (*) a000040_list a008578_list
    -- Reinhard Zumkeller, Oct 09 2012
  • Magma
    [&+[(NthPrime(n-1)*NthPrime(n)+1)]: n in [1..1000]]; // Vincenzo Librandi, Dec 23 2010
    
  • Mathematica
    f[n_]:=Prime[n]*Prime[n+1]+1; Table[f[n],{n,5!}] (* Vladimir Joseph Stephan Orlovsky, Feb 10 2010 *)
    Join[{3},Times@@@Partition[Prime[Range[40]],2,1]+1] (* Harvey P. Dale, Oct 02 2012 *)

A286625 Square array A(n,k) = A276945(n,k)/A002110(k-1), read by descending antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

Original entry on oeis.org

1, 1, 3, 1, 4, 4, 1, 6, 6, 5, 1, 8, 10, 7, 7, 1, 12, 14, 11, 16, 9, 1, 14, 22, 15, 36, 19, 10, 1, 18, 26, 23, 78, 41, 21, 11, 1, 20, 34, 27, 144, 85, 45, 22, 13, 1, 24, 38, 35, 222, 155, 91, 46, 31, 15, 1, 30, 46, 39, 324, 235, 165, 92, 71, 34, 16, 1, 32, 58, 47, 438, 341, 247, 166, 155, 76, 36, 17, 1, 38, 62, 59, 668, 457, 357, 248, 287, 162, 80, 37, 18
Offset: 1

Views

Author

Antti Karttunen, Jun 28 2017

Keywords

Examples

			The top left 12 X 12 corner of the array:
   1,  1,  1,   1,   1,   1,   1,   1,    1,    1,    1,    1
   3,  4,  6,   8,  12,  14,  18,  20,   24,   30,   32,   38
   4,  6, 10,  14,  22,  26,  34,  38,   46,   58,   62,   74
   5,  7, 11,  15,  23,  27,  35,  39,   47,   59,   63,   75
   7, 16, 36,  78, 144, 222, 324, 438,  668,  900, 1148, 1518
   9, 19, 41,  85, 155, 235, 341, 457,  691,  929, 1179, 1555
  10, 21, 45,  91, 165, 247, 357, 475,  713,  957, 1209, 1591
  11, 22, 46,  92, 166, 248, 358, 476,  714,  958, 1210, 1592
  13, 31, 71, 155, 287, 443, 647, 875, 1335, 1799, 2295, 3035
  15, 34, 76, 162, 298, 456, 664, 894, 1358, 1828, 2326, 3072
  16, 36, 80, 168, 308, 468, 680, 912, 1380, 1856, 2356, 3108
  17, 37, 81, 169, 309, 469, 681, 913, 1381, 1857, 2357, 3109
		

Crossrefs

Transpose: A286623.
Column 1: A276155.
Row 1: A000012, Row 2: A008864, Row 3: A100484, Row 4: A072055, Row 5: A023523 (from its second term onward), Row 6: A286624.
Cf. A276617 (analogous array).

Programs

Formula

A(n,k) = A276945(n, k) / A002110(k-1).

A276155 Complement of A276154; numbers that cannot be obtained by shifting left the primorial base representation (A049345) of some number.

Original entry on oeis.org

1, 3, 4, 5, 7, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 34, 35, 37, 39, 40, 41, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 63, 64, 65, 67, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 93, 94, 95, 97, 99, 100, 101, 103, 105, 106, 107, 108, 109
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2016

Keywords

Comments

The first 25 terms, when viewed in primorial base (A049345) look as: 1, 11, 20, 21, 101, 111, 120, 121, 201, 211, 220, 221, 300, 301, 310, 311, 320, 321, 400, 401, 410, 411, 420, 421, 1001.

Crossrefs

Complement: A276154.
Row 1 of A276943 and A286623. Column 1 of A276945 and A286625.
Cf. A005408, A057588, A061720, A143293, A286630 (subsequences).
For the first 17 terms coincides with A273670.

Programs

  • Mathematica
    nn = 109; b = MixedRadix[Reverse@ Prime@ NestWhileList[# + 1 &, 1, Times @@ Prime@ Range[# + 1] <= nn &]]; Complement[Range@ nn, Table[FromDigits[#, b] &@ Append[IntegerDigits[n, b], 0], {n, 0, nn}]] (* Version 10.2, or *)
    nn = 109; f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Complement[Range@ nn, Table[Total[Times @@@ Transpose@ {Map[Times @@ # &, Prime@ Range@ Range[0, Length@ # - 1]], Reverse@ #}] &@ Append[f@ n, 0], {n, 0, nn}]] (* Michael De Vlieger, Aug 26 2016 *)

A286624 a(n) = (prime(1+n)*prime(n)) + prime(n) + 1.

Original entry on oeis.org

9, 19, 41, 85, 155, 235, 341, 457, 691, 929, 1179, 1555, 1805, 2065, 2539, 3181, 3659, 4149, 4825, 5255, 5841, 6637, 7471, 8723, 9895, 10505, 11125, 11771, 12427, 14465, 16765, 18079, 19181, 20851, 22649, 23859, 25749, 27385, 29059, 31141, 32579, 34753, 37055, 38215, 39401, 42189, 47265, 50845, 52211
Offset: 1

Views

Author

Antti Karttunen, Jun 28 2017

Keywords

Comments

9 is the only perfect square in this sequence. - Altug Alkan, Jul 01 2017

Crossrefs

Row 6 of A286625 (column 6 of A286623). Column 4 of A328464.
One more than A123134.
Cf. A000040, A023523, A180932 (primes in this sequence).

Programs

Formula

a(n) = (A000040(1+n)*A000040(n)) + A000040(n) + 1.
a(n) = 1 + A123134(n).
a(n) = A000040(n) + A023523(1+n).
Showing 1-8 of 8 results.