cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A328464 Square array A(n,k) = A276156((2^(n-1)) * (2k-1)) / A002110(n-1), read by descending antidiagonals.

Original entry on oeis.org

1, 3, 1, 7, 4, 1, 9, 16, 6, 1, 31, 19, 36, 8, 1, 33, 106, 41, 78, 12, 1, 37, 109, 386, 85, 144, 14, 1, 39, 121, 391, 1002, 155, 222, 18, 1, 211, 124, 421, 1009, 2432, 235, 324, 20, 1, 213, 1156, 426, 1079, 2443, 4200, 341, 438, 24, 1, 217, 1159, 5006, 1086, 2575, 4213, 7430, 457, 668, 30, 1, 219, 1171, 5011, 17018, 2586, 4421, 7447, 12674, 691, 900, 32, 1
Offset: 1

Views

Author

Antti Karttunen, Oct 16 2019

Keywords

Comments

Array is read by falling antidiagonals with n (row) and k (column) ranging as: (n,k) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), ...
Row n contains all such sums of distinct primorials whose least significant summand is A002110(n-1), with each sum divided by that least significant primorial, which is also the largest primorial which divides that sum.

Examples

			Top left 9 X 11 corner of the array:
1: | 1,  3,   7,   9,    31,    33,    37,    39,    211,    213,    217
2: | 1,  4,  16,  19,   106,   109,   121,   124,   1156,   1159,   1171
3: | 1,  6,  36,  41,   386,   391,   421,   426,   5006,   5011,   5041
4: | 1,  8,  78,  85,  1002,  1009,  1079,  1086,  17018,  17025,  17095
5: | 1, 12, 144, 155,  2432,  2443,  2575,  2586,  46190,  46201,  46333
6: | 1, 14, 222, 235,  4200,  4213,  4421,  4434,  96578,  96591,  96799
7: | 1, 18, 324, 341,  7430,  7447,  7753,  7770, 215442, 215459, 215765
8: | 1, 20, 438, 457, 12674, 12693, 13111, 13130, 392864, 392883, 393301
9: | 1, 24, 668, 691, 20678, 20701, 21345, 21368, 765050, 765073, 765717
		

Crossrefs

Cf. A328463 (transpose).
Column 2: A008864.
Column 3: A023523 (after its initial term).
Column 4: A286624.
Cf. also arrays A276945, A286625.

Programs

  • PARI
    up_to = 105;
    A002110(n) = prod(i=1,n,prime(i));
    A276156(n) = { my(p=2,pr=1,s=0); while(n,if(n%2,s += pr); n >>= 1; pr *= p; p = nextprime(1+p)); (s); };
    A328464sq(n,k) = (A276156((2^(n-1)) * (k+k-1)) / A002110(n-1));
    A328464list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A328464sq(col,(a-(col-1))))); (v); };
    v328464 = A328464list(up_to);
    A328464(n) = v328464[n];

Formula

A(n,k) = A276156((2^(n-1)) * (2k-1)) / A002110(n-1).
a(n) = A328461(A135764(n)). [When all sequences are considered as one-dimensional]

A286623 Square array A(n,k) = A276943(n,k)/A002110(n-1), read by descending antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

Original entry on oeis.org

1, 3, 1, 4, 4, 1, 5, 6, 6, 1, 7, 7, 10, 8, 1, 9, 16, 11, 14, 12, 1, 10, 19, 36, 15, 22, 14, 1, 11, 21, 41, 78, 23, 26, 18, 1, 13, 22, 45, 85, 144, 27, 34, 20, 1, 15, 31, 46, 91, 155, 222, 35, 38, 24, 1, 16, 34, 71, 92, 165, 235, 324, 39, 46, 30, 1, 17, 36, 76, 155, 166, 247, 341, 438, 47, 58, 32, 1, 18, 37, 80, 162, 287, 248, 357, 457, 668, 59, 62, 38, 1
Offset: 1

Views

Author

Antti Karttunen, Jun 28 2017

Keywords

Examples

			The top left 12 X 12 corner of the array:
  1,  3,  4,  5,    7,    9,   10,   11,   13,   15,   16,   17
  1,  4,  6,  7,   16,   19,   21,   22,   31,   34,   36,   37
  1,  6, 10, 11,   36,   41,   45,   46,   71,   76,   80,   81
  1,  8, 14, 15,   78,   85,   91,   92,  155,  162,  168,  169
  1, 12, 22, 23,  144,  155,  165,  166,  287,  298,  308,  309
  1, 14, 26, 27,  222,  235,  247,  248,  443,  456,  468,  469
  1, 18, 34, 35,  324,  341,  357,  358,  647,  664,  680,  681
  1, 20, 38, 39,  438,  457,  475,  476,  875,  894,  912,  913
  1, 24, 46, 47,  668,  691,  713,  714, 1335, 1358, 1380, 1381
  1, 30, 58, 59,  900,  929,  957,  958, 1799, 1828, 1856, 1857
  1, 32, 62, 63, 1148, 1179, 1209, 1210, 2295, 2326, 2356, 2357
  1, 38, 74, 75, 1518, 1555, 1591, 1592, 3035, 3072, 3108, 3109
		

Crossrefs

Transpose: A286625.
Row 1: A276155.
Column 1: A000012, Column 2: A008864, Column 3: A100484, Column 4: A072055, Column 5: A023523 (from its second term onward), Column 6: A286624 (= 1 + A123134), Column 11: 2*A123134, Column 13: 3*A006094.
Cf. A276616 (analogous array).

Programs

Formula

A(n,k) = A276943(n, k) / A002110(n-1).

A286625 Square array A(n,k) = A276945(n,k)/A002110(k-1), read by descending antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

Original entry on oeis.org

1, 1, 3, 1, 4, 4, 1, 6, 6, 5, 1, 8, 10, 7, 7, 1, 12, 14, 11, 16, 9, 1, 14, 22, 15, 36, 19, 10, 1, 18, 26, 23, 78, 41, 21, 11, 1, 20, 34, 27, 144, 85, 45, 22, 13, 1, 24, 38, 35, 222, 155, 91, 46, 31, 15, 1, 30, 46, 39, 324, 235, 165, 92, 71, 34, 16, 1, 32, 58, 47, 438, 341, 247, 166, 155, 76, 36, 17, 1, 38, 62, 59, 668, 457, 357, 248, 287, 162, 80, 37, 18
Offset: 1

Views

Author

Antti Karttunen, Jun 28 2017

Keywords

Examples

			The top left 12 X 12 corner of the array:
   1,  1,  1,   1,   1,   1,   1,   1,    1,    1,    1,    1
   3,  4,  6,   8,  12,  14,  18,  20,   24,   30,   32,   38
   4,  6, 10,  14,  22,  26,  34,  38,   46,   58,   62,   74
   5,  7, 11,  15,  23,  27,  35,  39,   47,   59,   63,   75
   7, 16, 36,  78, 144, 222, 324, 438,  668,  900, 1148, 1518
   9, 19, 41,  85, 155, 235, 341, 457,  691,  929, 1179, 1555
  10, 21, 45,  91, 165, 247, 357, 475,  713,  957, 1209, 1591
  11, 22, 46,  92, 166, 248, 358, 476,  714,  958, 1210, 1592
  13, 31, 71, 155, 287, 443, 647, 875, 1335, 1799, 2295, 3035
  15, 34, 76, 162, 298, 456, 664, 894, 1358, 1828, 2326, 3072
  16, 36, 80, 168, 308, 468, 680, 912, 1380, 1856, 2356, 3108
  17, 37, 81, 169, 309, 469, 681, 913, 1381, 1857, 2357, 3109
		

Crossrefs

Transpose: A286623.
Column 1: A276155.
Row 1: A000012, Row 2: A008864, Row 3: A100484, Row 4: A072055, Row 5: A023523 (from its second term onward), Row 6: A286624.
Cf. A276617 (analogous array).

Programs

Formula

A(n,k) = A276945(n, k) / A002110(k-1).

A286624 a(n) = (prime(1+n)*prime(n)) + prime(n) + 1.

Original entry on oeis.org

9, 19, 41, 85, 155, 235, 341, 457, 691, 929, 1179, 1555, 1805, 2065, 2539, 3181, 3659, 4149, 4825, 5255, 5841, 6637, 7471, 8723, 9895, 10505, 11125, 11771, 12427, 14465, 16765, 18079, 19181, 20851, 22649, 23859, 25749, 27385, 29059, 31141, 32579, 34753, 37055, 38215, 39401, 42189, 47265, 50845, 52211
Offset: 1

Views

Author

Antti Karttunen, Jun 28 2017

Keywords

Comments

9 is the only perfect square in this sequence. - Altug Alkan, Jul 01 2017

Crossrefs

Row 6 of A286625 (column 6 of A286623). Column 4 of A328464.
One more than A123134.
Cf. A000040, A023523, A180932 (primes in this sequence).

Programs

Formula

a(n) = (A000040(1+n)*A000040(n)) + A000040(n) + 1.
a(n) = 1 + A123134(n).
a(n) = A000040(n) + A023523(1+n).

A079080 a(n) = gcd((prime(n)+1)*(prime(n+1)+1)/4, prime(n)*prime(n+1)+1).

Original entry on oeis.org

1, 2, 12, 6, 6, 3, 18, 6, 4, 60, 4, 3, 42, 6, 4, 2, 30, 2, 6, 36, 8, 6, 2, 3, 3, 204, 6, 54, 3, 48, 6, 2, 138, 6, 300, 4, 2, 6, 4, 2, 90, 12, 96, 3, 396, 10, 14, 6, 114, 3, 8, 120, 6, 2, 4, 4, 540, 4, 3, 282, 6, 6, 6, 156, 3, 6, 2, 6, 174, 3, 4, 6, 4, 2, 6, 4, 3, 3, 15, 6, 210, 12, 216, 4, 6, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 22 2002

Keywords

Crossrefs

Programs

  • Haskell
    a079080 n = a079079 n `gcd` a023523 (n + 1)
    -- Reinhard Zumkeller, Oct 09 2012
    
  • Mathematica
    a[n_] := Module[{p = Prime[n], q}, q = NextPrime[p]; GCD[(p+1) * (q+1) / 4, p*q + 1]]; Array[a, 100] (* Amiram Eldar, Apr 06 2025 *)
  • PARI
    a(n) = my(p = prime(n), q = nextprime(p+1)); gcd((p+1)*(q+1)/4, p*q+1); \\ Amiram Eldar, Apr 06 2025

Formula

a(n) = gcd(A079079(n), A023523(n+1)).

A079081 Numerator of (prime(n)+1)*(prime(n+1)+1)/(4*(prime(n)*prime(n+1)+1)).

Original entry on oeis.org

3, 3, 1, 4, 7, 21, 5, 20, 45, 4, 76, 133, 11, 88, 162, 405, 31, 527, 204, 37, 185, 280, 945, 735, 833, 13, 468, 55, 1045, 76, 704, 2277, 35, 875, 19, 1501, 3239, 1148, 1827, 3915, 91, 728, 97, 3201, 25, 1060, 848, 2128, 115, 4485, 1755, 121, 2541, 8127, 4257, 4455
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 22 2002

Keywords

Crossrefs

Denominator = A079082.

Programs

  • Haskell
    a079081 n = a079081_list !! (n-1)
    a079081_list = zipWith div a079079_list a079080_list
    -- Reinhard Zumkeller, Oct 09 2012
    
  • Mathematica
    a[n_] := Module[{p = Prime[n], q}, q = NextPrime[p]; Numerator[(p+1) * (q+1) / (4 * (p*q + 1))]]; Array[a, 100] (* Amiram Eldar, Apr 06 2025 *)
  • PARI
    a(n) = my(p = prime(n), q = nextprime(p+1)); numerator((p+1) * (q+1) / (4 * (p*q + 1))); \\ Amiram Eldar, Apr 06 2025

Formula

a(n) = numerator(A079079(n)/A023523(n+1)).
a(n) = A079079(n)/A079080(n).

A079082 Denominator of (prime(n)+1)*(prime(n+1)+1)/(4*(prime(n)*prime(n+1)+1)).

Original entry on oeis.org

7, 8, 3, 13, 24, 74, 18, 73, 167, 15, 287, 506, 42, 337, 623, 1564, 120, 2044, 793, 144, 721, 1093, 3694, 2878, 3266, 51, 1837, 216, 4106, 299, 2773, 8974, 138, 3452, 75, 5927, 12796, 4537, 7223, 15484, 360, 2881, 384, 12674, 99, 4199, 3361, 8437, 456
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 22 2002

Keywords

Crossrefs

Numerator = A079081.

Programs

  • Haskell
    a079082 n = a079082_list !! (n-1)
    a079082_list = zipWith div (tail a023523_list) a079080_list
    -- Reinhard Zumkeller, Oct 09 2012
    
  • Mathematica
    ((#[[1]]+1)(#[[2]]+1))/(4(Times@@#+1))&/@Partition[Prime[Range[50]],2,1]//Denominator (* Harvey P. Dale, Jan 01 2018 *)
  • PARI
    a(n) = my(p = prime(n), q = nextprime(p+1)); denominator((p+1) * (q+1) / (4 * (p*q + 1))); \\ Amiram Eldar, Apr 06 2025

Formula

a(n) = denominator(A079079(n)/A023523(n+1)).
a(n) = A023523(n+1)/A079080(n).

A072565 a(n) = prime(n+1)*prime(n+2)+1 mod prime(n), where prime(n) is the n-th prime.

Original entry on oeis.org

0, 0, 3, 4, 2, 12, 13, 3, 3, 17, 30, 25, 13, 41, 26, 49, 17, 0, 25, 17, 61, 41, 2, 8, 25, 13, 25, 13, 73, 27, 41, 49, 25, 121, 17, 73, 61, 41, 73, 49, 25, 121, 13, 25, 29, 90, 193, 25, 13, 41, 49, 25, 161, 73, 73, 49, 17, 61, 25, 25, 241, 253, 25, 13, 73, 281, 97, 121, 13
Offset: 1

Views

Author

G. L. Honaker, Jr., Aug 06 2002

Keywords

Examples

			a(18) = prime(19)*prime(20)+1 mod prime(18) = 67*71+1 mod 61 = 0.
		

References

  • R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer-Verlag, NY, (2002 printing), Research problem 1.85, p. 73.

Crossrefs

Programs

  • GAP
    P:=Filtered([1..1000],IsPrime);;
    List([1..70],n->(P[n+1]*P[n+2]+1) mod P[n]); # Muniru A Asiru, Mar 09 2018
  • Magma
    [(NthPrime(n+1)*NthPrime(n+2)+1) mod NthPrime(n): n in [1..100]]; // Vincenzo Librandi, Feb 28 2018
    
  • Maple
    p:=ithprime; seq((p(n+1)*p(n+2)+1) mod p(n),n=1..70); # Muniru A Asiru, Mar 09 2018
  • Mathematica
    a[n_] := Mod[Prime[n+1] Prime[n+2] + 1, Prime[n]]
    Mod[#[[2]]#[[3]]+1,#[[1]]]&/@Partition[Prime[Range[80]],3,1] (* Harvey P. Dale, Dec 19 2018 *)
  • PARI
    a(n) = (prime(n+1)*prime(n+2) + 1) % prime(n); \\ Michel Marcus, Feb 28 2018
    

Formula

a(n) = A023523(n+1) mod A000040(n). - Michel Marcus, Feb 28 2018

Extensions

Edited by Dean Hickerson and Robert G. Wilson v, Aug 10 2002

A023525 Greatest prime divisor of prime(n)*prime(n-1) + 1.

Original entry on oeis.org

3, 7, 2, 3, 13, 3, 37, 3, 73, 167, 5, 41, 23, 7, 337, 89, 23, 5, 73, 61, 3, 103, 1093, 1847, 1439, 71, 17, 167, 3, 2053, 23, 59, 641, 23, 863, 5, 5927, 457, 349, 233, 79, 5, 67, 3, 6337, 11, 19, 3361, 59, 19, 8893, 6961, 5, 71, 16127, 71, 769, 5, 383
Offset: 1

Views

Author

Keywords

Comments

This sequence assumes prime(0) = 1.
Heuristically, we should expect a(n) -> infinity as n -> infinity, i.e. for any k there should be only finitely many terms <= k. It seems likely that 3 is the only n for which a(n) = 2. There are at least 14 occurrences of a(n) = 3, including 1, 4, 6, 8, 21, 29, 44, 84, 191, 378, 13006, 39420, 62947, 78156. - Robert Israel, Aug 14 2015

Crossrefs

Programs

  • Maple
    Primes:= select(isprime,[2,(2*i+1 $ i=1..1000)]):
    3, seq(max(numtheory:-factorset(Primes[i]*Primes[i+1]+1)), i=1..nops(Primes)-1); # Robert Israel, Aug 14 2015
  • Mathematica
    Join[{3},FactorInteger[#][[-1,1]]&/@(Times@@@Partition[Prime[ Range[ 60]], 2,1]+1)] (* Harvey P. Dale, Apr 12 2013 *)
  • PARI
    gpf(n)=my(f=factor(n)[, 1]~);f[#f];
    myprime(n)=if(n==0,1,prime(n));
    first(m)=vector(m,i,gpf(1+myprime(i)*myprime(i-1))); \\ Anders Hellström, Aug 13 2015

Formula

a(n) = A006530(A023523(n)). - Michel Marcus, Aug 12 2015

A023528 Exponent of 2 in prime factorization of prime(n)*prime(n-1) + 1.

Original entry on oeis.org

0, 0, 4, 2, 1, 4, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 3, 4, 3, 1, 6, 3, 1, 2, 1, 1, 2, 1, 4, 1, 4, 1, 2, 2, 3, 2, 2, 3, 1, 2, 3, 4, 2, 12, 1, 2, 1, 1, 1, 4, 1, 3, 8, 2, 2, 3, 2, 2, 2, 1, 2, 3, 5, 1, 6, 1, 5, 2, 2, 4, 1, 3, 1, 2, 3, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Assumes the not generally accepted convention prime(0) = 1. - Michel Marcus, Jun 06 2019

Crossrefs

Programs

  • Magma
    p:=PrimesUpTo(10000); sol:=[];sol[1]:=0; for n in [2..80] do sol[n]:=Valuation(1+p[n]*p[n-1],2);end for; sol; // Marius A. Burtea, Jun 06 2019
    
  • Mathematica
    Join[{0},FactorInteger[#][[1,2]]&/@(Times@@@Partition[Prime[Range[ 80]], 2,1]+1)] (* Harvey P. Dale, Dec 25 2011 *)
  • PARI
    p(n) = if (n==0, 1, prime(n));
    a(n) = valuation(p(n)*p(n-1) + 1, 2); \\ Michel Marcus, Jun 06 2019
    
  • Python
    from sympy import prime
    def A023528(n): return 0 if n == 1 else (~(m:=prime(n)*prime(n-1)+1)& m-1).bit_length() # Chai Wah Wu, Jul 07 2022

Formula

a(n) = A007814(A023523(n)). - Michel Marcus, Jun 06 2019

Extensions

a(1)=a(2)=0 corrected by Sean A. Irvine, Jun 05 2019
Showing 1-10 of 11 results. Next