cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A165286 Primes which are the sum of two or more consecutive terms of A072055.

Original entry on oeis.org

23, 61, 83, 101, 139, 157, 197, 263, 283, 293, 331, 349, 367, 383, 401, 449, 491, 509, 541, 569, 571, 577, 641, 659, 661, 701, 751, 773, 809, 811, 853, 859, 881, 887, 967, 977, 997, 1009, 1039, 1069, 1117, 1123, 1181, 1193, 1217, 1237, 1279, 1283, 1361
Offset: 1

Views

Author

Keywords

Comments

The terms in A072055 are odd, so the count of terms in the sum must be odd to yield a prime.

Examples

			a(1)= 5+7+11 = sum_{i=1..3} A072055(i) = 23.
a(2) = sum_{i=1..5} A072055(i) = 5+7+11+15+23 = 61. a(3) = 7+11+15+23+27 = 83.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[s=2*Prime[m]+1;Do[p=Prime[n];s+=(2*p+1);If[PrimeQ[s], If[s<=6949, AppendTo[lst,s]]],{n,m+1,6!}],{m,1,6!}];lst=Take[Union@lst,200]
    Module[{nn=100,terms},terms=2*Prime[Range[nn]]+1;Take[Union[Select[ Flatten[ Table[Total/@Partition[terms,n,1],{n,3,nn,2}]],PrimeQ]],nn/2]] (* Harvey P. Dale, Jun 11 2015 *)

Extensions

Redefined in terms of A072055; cross-references to unrelated sequences deleted - R. J. Mathar, Sep 16 2009

A005385 Safe primes p: (p-1)/2 is also prime.

Original entry on oeis.org

5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619, 1823, 1907, 2027, 2039, 2063, 2099, 2207, 2447, 2459, 2579, 2819, 2879, 2903, 2963
Offset: 1

Views

Author

Keywords

Comments

Then (p-1)/2 is called a Sophie Germain prime: see A005384.
Or, primes of the form 2p+1 where p is prime.
Primes p such that denominator(Bernoulli(p-1) + 1/p) = 6. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Feb 10 2004
Primes p such that p-1 is a semiprime. - Zak Seidov, Jul 01 2005
A156659(a(n)) = 1; A156875 gives numbers of safe primes <= n. - Reinhard Zumkeller, Feb 18 2009
From Daniel Forgues, Jul 31 2009: (Start)
A safe prime p is 7 or of the form 6k-1, k >= 1, i.e., p == 5 (mod 6).
A prime p of the form 6k+1, k >= 2, i.e., p = 1 (mod 6), cannot be a safe prime since (p-1)/2 is composite and divisible by 3. (End)
If k is the product of the n-th safe prime p and its corresponding Sophie Germain prime (p-1)/2, then a(n) = 2(k-phi(k))/3 + 1, where phi is Euler's totient function. - Wesley Ivan Hurt, Oct 03 2013
From Bob Selcoe, Apr 14 2014: (Start)
When the n-th prime is divided by all primes up to the (n-1)-th prime, safe primes (p) have remainders of 1 when divided by 2 and (p-1)/2 and no other primes. That is, p(mod j)=1 iff j={2,(p-1)/2}; p>j, {p,j}=>prime. Explanation: Generally, x(mod y)=1 iff x=y'+1, where y' is the set of divisors of y, y'>1. Since safe primes (p) are of the form p(mod j)=1 iff p and j are prime, then j={j'}. That is, since j is prime, there are no divisors of j (greater than 1) other than j. Therefore, no primes other than j exist which satisfy the equation p(mod j)=1.
Except primes of the form 2^n+1 (n>=0), all non-safe primes (p') will have at least one prime (p") greater than 2 and less than (p-1)/2 such that p'(mod p")=1. Explanation: Non-safe primes (p') are of the form p'(mod k)=1 where k is composite. This means prime divisors of k exist, and p" is the set of prime divisors of k (example p'=89: k=44; p"={2,11}). The exception applies because p"={2} iff p'=2^n+1.
Refer to the rows in triangle A207409 for illustration and further explanation. (End)
Conjecture: there is a strengthening of the Bertrand postulate for n >= 24: the interval (n, 2*n) contains a safe prime. It has been tested by Peter J. C. Moses up to n = 10^7. - Vladimir Shevelev, Jul 06 2015
The six known safe primes p such that (p-1)/2 is a Fibonacci prime are in A263880. - Jonathan Sondow, Nov 04 2015
The only term in common with A005383 is 5. - Zak Seidov, Dec 31 2015
From the fourth entry onward, do these correspond to Smarandache's problem 34 (see A007931 link), specifically values which cannot be used (do not meet conditions) to confirm the conjecture? - Bill McEachen, Sep 29 2016
Primes p with the property that there is a prime q such that p+q^2 is a square. - Zak Seidov, Feb 16 2017
It is conjectured that there are infinitely many safe primes, and their estimated asymptotic density ~ 2C/(log n)^2 (where C = 0.66... is the twin prime constant A005597) converges to the actual value as far as we know. - M. F. Hasler, Jun 14 2021

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Except for the initial term, this is identical to A079148.
Subsequence of A088707.
Primes in A072055.

Programs

  • Haskell
    a005385 n = a005385_list !! (n-1)
    a005385_list = filter ((== 1) . a010051 . (`div` 2)) a000040_list
    -- Reinhard Zumkeller, Sep 18 2011
    
  • Magma
    [p: p in PrimesUpTo(3000) | IsPrime((p-1) div 2)]; // Vincenzo Librandi, Jul 06 2015
    
  • Maple
    with(numtheory); [ seq(safeprime(i),i=1..3000) ]: convert(%,set); convert(%,list); sort(%);
    A005385_list := n->select(i->isprime(iquo(i,2)),select(i->isprime(i),[$1..n])): # Peter Luschny, Nov 08 2010
  • Mathematica
    Select[Prime[Range[1000]],PrimeQ[(#-1)/2]&] (* Zak Seidov, Jan 26 2011 *)
  • PARI
    g(n) = forprime(x=2,n,y=x+x+1;if(isprime(y),print1(y","))) \\ Cino Hilliard, Sep 12 2004
    
  • PARI
    [x|x<-primes(10^3), bigomega(x-1)==2] \\ Altug Alkan, Nov 04 2015
    
  • Python
    from sympy import isprime, primerange
    def aupto(limit):
      alst = []
      for p in primerange(1, limit+1):
        if isprime((p-1)//2): alst.append(p)
      return alst
    print(aupto(2963)) # Michael S. Branicky, May 07 2021

Formula

a(n) = 2 * A005384(n) + 1.

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Feb 15 2001

A286623 Square array A(n,k) = A276943(n,k)/A002110(n-1), read by descending antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

Original entry on oeis.org

1, 3, 1, 4, 4, 1, 5, 6, 6, 1, 7, 7, 10, 8, 1, 9, 16, 11, 14, 12, 1, 10, 19, 36, 15, 22, 14, 1, 11, 21, 41, 78, 23, 26, 18, 1, 13, 22, 45, 85, 144, 27, 34, 20, 1, 15, 31, 46, 91, 155, 222, 35, 38, 24, 1, 16, 34, 71, 92, 165, 235, 324, 39, 46, 30, 1, 17, 36, 76, 155, 166, 247, 341, 438, 47, 58, 32, 1, 18, 37, 80, 162, 287, 248, 357, 457, 668, 59, 62, 38, 1
Offset: 1

Views

Author

Antti Karttunen, Jun 28 2017

Keywords

Examples

			The top left 12 X 12 corner of the array:
  1,  3,  4,  5,    7,    9,   10,   11,   13,   15,   16,   17
  1,  4,  6,  7,   16,   19,   21,   22,   31,   34,   36,   37
  1,  6, 10, 11,   36,   41,   45,   46,   71,   76,   80,   81
  1,  8, 14, 15,   78,   85,   91,   92,  155,  162,  168,  169
  1, 12, 22, 23,  144,  155,  165,  166,  287,  298,  308,  309
  1, 14, 26, 27,  222,  235,  247,  248,  443,  456,  468,  469
  1, 18, 34, 35,  324,  341,  357,  358,  647,  664,  680,  681
  1, 20, 38, 39,  438,  457,  475,  476,  875,  894,  912,  913
  1, 24, 46, 47,  668,  691,  713,  714, 1335, 1358, 1380, 1381
  1, 30, 58, 59,  900,  929,  957,  958, 1799, 1828, 1856, 1857
  1, 32, 62, 63, 1148, 1179, 1209, 1210, 2295, 2326, 2356, 2357
  1, 38, 74, 75, 1518, 1555, 1591, 1592, 3035, 3072, 3108, 3109
		

Crossrefs

Transpose: A286625.
Row 1: A276155.
Column 1: A000012, Column 2: A008864, Column 3: A100484, Column 4: A072055, Column 5: A023523 (from its second term onward), Column 6: A286624 (= 1 + A123134), Column 11: 2*A123134, Column 13: 3*A006094.
Cf. A276616 (analogous array).

Programs

Formula

A(n,k) = A276943(n, k) / A002110(n-1).

A286625 Square array A(n,k) = A276945(n,k)/A002110(k-1), read by descending antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

Original entry on oeis.org

1, 1, 3, 1, 4, 4, 1, 6, 6, 5, 1, 8, 10, 7, 7, 1, 12, 14, 11, 16, 9, 1, 14, 22, 15, 36, 19, 10, 1, 18, 26, 23, 78, 41, 21, 11, 1, 20, 34, 27, 144, 85, 45, 22, 13, 1, 24, 38, 35, 222, 155, 91, 46, 31, 15, 1, 30, 46, 39, 324, 235, 165, 92, 71, 34, 16, 1, 32, 58, 47, 438, 341, 247, 166, 155, 76, 36, 17, 1, 38, 62, 59, 668, 457, 357, 248, 287, 162, 80, 37, 18
Offset: 1

Views

Author

Antti Karttunen, Jun 28 2017

Keywords

Examples

			The top left 12 X 12 corner of the array:
   1,  1,  1,   1,   1,   1,   1,   1,    1,    1,    1,    1
   3,  4,  6,   8,  12,  14,  18,  20,   24,   30,   32,   38
   4,  6, 10,  14,  22,  26,  34,  38,   46,   58,   62,   74
   5,  7, 11,  15,  23,  27,  35,  39,   47,   59,   63,   75
   7, 16, 36,  78, 144, 222, 324, 438,  668,  900, 1148, 1518
   9, 19, 41,  85, 155, 235, 341, 457,  691,  929, 1179, 1555
  10, 21, 45,  91, 165, 247, 357, 475,  713,  957, 1209, 1591
  11, 22, 46,  92, 166, 248, 358, 476,  714,  958, 1210, 1592
  13, 31, 71, 155, 287, 443, 647, 875, 1335, 1799, 2295, 3035
  15, 34, 76, 162, 298, 456, 664, 894, 1358, 1828, 2326, 3072
  16, 36, 80, 168, 308, 468, 680, 912, 1380, 1856, 2356, 3108
  17, 37, 81, 169, 309, 469, 681, 913, 1381, 1857, 2357, 3109
		

Crossrefs

Transpose: A286623.
Column 1: A276155.
Row 1: A000012, Row 2: A008864, Row 3: A100484, Row 4: A072055, Row 5: A023523 (from its second term onward), Row 6: A286624.
Cf. A276617 (analogous array).

Programs

Formula

A(n,k) = A276945(n, k) / A002110(k-1).

A089241 Even numbers k such that k/2 - 1 is prime.

Original entry on oeis.org

6, 8, 12, 16, 24, 28, 36, 40, 48, 60, 64, 76, 84, 88, 96, 108, 120, 124, 136, 144, 148, 160, 168, 180, 196, 204, 208, 216, 220, 228, 256, 264, 276, 280, 300, 304, 316, 328, 336, 348, 360, 364, 384, 388, 396, 400, 424, 448, 456, 460, 468, 480, 484
Offset: 1

Views

Author

Giovanni Teofilatto, Dec 22 2003

Keywords

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta,UTET, CittaStudiEdizioni, Milano 1997

Crossrefs

a(n) = A072055(n) + 1.
a(n) = A029933(A000040(n)).

Programs

Formula

a(n) = 2*prime(n) + 2. - Alonso del Arte, Mar 02 2017

Extensions

Corrected (62 replaced by 64, 202 replaced by 204, 314 by 316, 386 by 388) by R. J. Mathar, Apr 22 2010
Offset corrected by Arkadiusz Wesolowski, Aug 09 2011

A278230 Least number with the prime signature of 2*prime(n) + 1.

Original entry on oeis.org

2, 2, 2, 6, 2, 8, 6, 6, 2, 2, 12, 12, 2, 6, 6, 2, 6, 6, 24, 6, 12, 6, 2, 2, 30, 6, 12, 6, 6, 2, 30, 2, 12, 12, 6, 6, 60, 6, 6, 2, 2, 12, 2, 12, 6, 30, 12, 6, 30, 24, 2, 2, 30, 2, 6, 6, 12, 6, 30, 2, 48, 2, 30, 6, 30, 6, 30, 72, 6, 6, 6, 2, 60, 12, 30, 6, 6, 30, 6, 60, 2, 6, 2, 12, 6, 2, 6, 30, 6, 12, 30, 6, 60, 2, 24, 6, 2, 6, 6, 12, 30, 6, 12, 6, 12, 210, 12
Offset: 1

Views

Author

Antti Karttunen, Nov 19 2016

Keywords

Crossrefs

Cf. A072192 (positions of 2's), A005384.
Cf. also A278227, A278228, A278229.

Programs

  • Mathematica
    Table[Times @@ MapIndexed[(Prime@ First@ #2)^#1 &, #] &@ If[Length@ # == 1 && #[[1, 1]] == 1, {0}, Reverse@ Sort@ #[[All, -1]]] &@ FactorInteger[ 2 Prime@ n + 1], {n, 120}] (* Michael De Vlieger, Nov 21 2016 *)
  • Scheme
    (define (A278230 n) (A046523 (+ 1 (* 2 (A000040 n)))))

Formula

a(n) = A046523(A072055(n)) = A046523(1 + 2*A000040(n)).

A023589 a(n) is the number of distinct prime divisors of 2*prime(n)+1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 1, 3, 2, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 3, 2, 2, 1, 1, 2, 1, 2, 2, 3, 2, 2, 3, 2, 1, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 1, 3, 2, 3, 2, 3, 2, 2, 2, 2, 1, 3, 2, 3, 2, 2, 3, 2, 3, 1, 2, 1, 2, 2, 1, 2, 3, 2, 2, 3, 2, 3, 1, 2, 2, 1, 2, 2
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A023590 Greatest prime divisor of 2*prime(n)+1.

Original entry on oeis.org

5, 7, 11, 5, 23, 3, 7, 13, 47, 59, 7, 5, 83, 29, 19, 107, 17, 41, 5, 13, 7, 53, 167, 179, 13, 29, 23, 43, 73, 227, 17, 263, 11, 31, 23, 101, 7, 109, 67, 347, 359, 11, 383, 43, 79, 19, 47, 149, 13, 17, 467, 479, 23, 503, 103, 31, 11, 181, 37, 563, 7, 587, 41, 89
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[2Prime[n]+1][[-1,1]],{n,70}] (* Harvey P. Dale, Jun 22 2013 *)
  • PARI
    a(n) = vecmax(factor(2*prime(n)+1)[,1]); \\ Michel Marcus, Aug 08 2020

Formula

a(n) = A006530(A072055(n)). - Amiram Eldar, Aug 08 2020

A072057 Sum of divisors of 2*prime(n)+1.

Original entry on oeis.org

6, 8, 12, 24, 24, 40, 48, 56, 48, 60, 104, 124, 84, 120, 120, 108, 144, 168, 240, 168, 228, 216, 168, 180, 336, 240, 312, 264, 296, 228, 432, 264, 372, 416, 336, 408, 624, 440, 408, 348, 360, 532, 384, 572, 480, 640, 624, 600, 672, 720, 468
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 11 2002

Keywords

Examples

			Divisors of A072055(8) = 2*A000040(8)+1 = 2*19+1 = 39: {1,3,13,39}, therefore a(8) = 1+3+13+39 = 56.
		

Crossrefs

Programs

  • Haskell
    a072057 = a000203 . a072055  -- Reinhard Zumkeller, Oct 10 2013
    
  • Mathematica
    DivisorSigma[1,#]&/@(2Prime[Range[60]]+1) (* Harvey P. Dale, Sep 17 2013 *)
  • PARI
    a(n) = sigma(2*prime(n)+1); \\ Amiram Eldar, Apr 26 2024
    
  • PARI
    lista(pmax) = forprime(p = 2, pmax, print1(sigma(2*p+1), ", ")); \\ Amiram Eldar, Apr 26 2024

Formula

a(n) = A000203(A072055(n)).

A072060 Smallest prime p such that 2*p+1 has n prime factors (with multiplicity).

Original entry on oeis.org

2, 7, 13, 67, 283, 607, 1093, 12757, 22963, 49207, 482233, 1623847, 797161, 14614627, 19929037, 35872267, 150663523, 2044719247, 1355971711, 9879222469, 37773497677, 200490103057, 172595827849, 235357947067, 1176789735337, 5507375961379, 10591107618037
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 11 2002

Keywords

Examples

			a(4)=67=A000040(19): 2*67+1 = 135 = 5*3^3, 4 factors.
		

Crossrefs

Programs

  • PARI
    generate(A, B, n) = A=max(A, 2^n); (f(m, p, n) = my(list=List()); if(n==1, forprime(q=max(p,ceil(A/m)), B\m, my(t=m*q); if(isprime((t-1)/2), listput(list, (t-1)/2))), forprime(q = p, sqrtnint(B\m, n), my(t=m*q); list=concat(list, f(t, q, n-1)))); list); vecsort(Vec(f(1, 3, n)));
    a(n) = my(x=2^n, y=2*x); while(1, my(v=generate(x, y, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Feb 05 2023

Extensions

More terms from Don Reble, Apr 15 2003
Showing 1-10 of 23 results. Next