cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A072055 a(n) = 2*prime(n)+1.

Original entry on oeis.org

5, 7, 11, 15, 23, 27, 35, 39, 47, 59, 63, 75, 83, 87, 95, 107, 119, 123, 135, 143, 147, 159, 167, 179, 195, 203, 207, 215, 219, 227, 255, 263, 275, 279, 299, 303, 315, 327, 335, 347, 359, 363, 383, 387, 395, 399, 423, 447, 455, 459, 467, 479
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 11 2002

Keywords

Crossrefs

One less than A089241. After the initial term equal to A166496.
Row 4 of A286625, column 4 of A286623.

Programs

Formula

a(n) = A089241(n)-1.

A072059 Smallest prime p such that 2*p+1 has n distinct prime factors.

Original entry on oeis.org

2, 7, 97, 577, 7507, 217717, 5232727, 75172597, 1617423307, 59844662377, 2750790860317, 109455887488447, 4621264673452927, 218071376383127767, 10914293640945722527, 662082573402158125717, 41249727342503299116997
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 11 2002

Keywords

Comments

Note that for each n=1,...,8, the product of the smallest n-1 distinct prime factors of 2*a(n)+1 is p(n)#/2, where p(n)# is the primorial (A002110) of the n-th prime - and the n-th distinct prime factor >= p(n+1). - Rick L. Shepherd, Jul 06 2002

Examples

			a(4)=577=A000040(106): 2*577+1 = 1155 = 11*7*5*3, 4 distinct factors.
		

Crossrefs

Programs

  • PARI
    for (n=1,8, p=1; until(isprime(p) && omega(2*p+1)==n, p++); print1(p,","))

Extensions

More terms from Rick L. Shepherd, Jul 06 2002
More terms from Don Reble, Apr 15 2003

A367687 a(n) is the first prime p such that n*p+1 is the product of n primes counted with multiplicity.

Original entry on oeis.org

2, 7, 17, 47, 79, 9479, 41, 5923, 199, 33461, 2141, 69173177, 11579, 7655281, 20753, 64869017, 233231, 2622816297743, 341477, 14508897313, 8138947, 24565981007, 27445337, 90698401133219401, 313566167, 2552728502809, 229909997, 23451738297083, 948780491, 20677177107714198558766009, 3390080033
Offset: 1

Views

Author

Zak Seidov and Robert Israel, Nov 26 2023

Keywords

Examples

			a(3) = 17 because 17 is prime and 3 * 17 + 1 = 52 = 2^2 * 13 is the product of 3 primes, and no smaller prime works.
		

Crossrefs

Programs

  • Maple
    f:= proc(n)
      uses priqueue;
    local Q,t,q,i;
      initialize(Q);
      q:= 2;
      while n mod q = 0 do q:= nextprime(q) od:
      insert([-q^n,q,n],Q);
      do
        t:= extract(Q);
        if -t[1]-1 mod n = 0 and isprime((-t[1]-1)/n) then return (-t[1]-1)/n fi;
        q:= nextprime(t[2]);
        while n mod q = 0 do q:= nextprime(q) od;
        for i from 1 to t[3] do
          insert([t[1]*(q/t[2])^i,q,i],Q);
        od
      od;
    end proc:
    map(f, [$1..40]);

Formula

A001222(n*a(n)+1) = n.
Showing 1-3 of 3 results.