cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A072055 a(n) = 2*prime(n)+1.

Original entry on oeis.org

5, 7, 11, 15, 23, 27, 35, 39, 47, 59, 63, 75, 83, 87, 95, 107, 119, 123, 135, 143, 147, 159, 167, 179, 195, 203, 207, 215, 219, 227, 255, 263, 275, 279, 299, 303, 315, 327, 335, 347, 359, 363, 383, 387, 395, 399, 423, 447, 455, 459, 467, 479
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 11 2002

Keywords

Crossrefs

One less than A089241. After the initial term equal to A166496.
Row 4 of A286625, column 4 of A286623.

Programs

Formula

a(n) = A089241(n)-1.

A072059 Smallest prime p such that 2*p+1 has n distinct prime factors.

Original entry on oeis.org

2, 7, 97, 577, 7507, 217717, 5232727, 75172597, 1617423307, 59844662377, 2750790860317, 109455887488447, 4621264673452927, 218071376383127767, 10914293640945722527, 662082573402158125717, 41249727342503299116997
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 11 2002

Keywords

Comments

Note that for each n=1,...,8, the product of the smallest n-1 distinct prime factors of 2*a(n)+1 is p(n)#/2, where p(n)# is the primorial (A002110) of the n-th prime - and the n-th distinct prime factor >= p(n+1). - Rick L. Shepherd, Jul 06 2002

Examples

			a(4)=577=A000040(106): 2*577+1 = 1155 = 11*7*5*3, 4 distinct factors.
		

Crossrefs

Programs

  • PARI
    for (n=1,8, p=1; until(isprime(p) && omega(2*p+1)==n, p++); print1(p,","))

Extensions

More terms from Rick L. Shepherd, Jul 06 2002
More terms from Don Reble, Apr 15 2003

A023516 Number of distinct prime divisors of prime(n)*prime(n-1) - 1.

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 3, 3, 2, 3, 2, 3, 2, 2, 3, 4, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 4, 3, 2, 4, 2, 3, 2, 4, 3, 3, 4, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 2, 3, 3, 4, 4, 4, 4, 4, 3, 4, 2, 3, 4, 2, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 3, 2, 4
Offset: 1

Views

Author

Keywords

Comments

This is taking prime(0)=1 (see first comment in A023515). - Vincenzo Librandi, Apr 27 2019

Crossrefs

Programs

  • Magma
    [#PrimeDivisors(NthPrime(n)*(NthPrime(n-1))-1): n in [1..100]]; // Vincenzo Librandi, Apr 27 2019
    
  • Maple
    0,seq(nops(numtheory:-factorset(ithprime(n)*ithprime(n-1)-1)),n=2..120); # Muniru A Asiru, Apr 29 2019
  • Mathematica
    Prepend[Table[PrimeNu[Prime[n] Prime[n-1] - 1], {n, 2, 80}],0] (* Vincenzo Librandi, Apr 27 2019 *)
  • PARI
    a(n) = if (n==1, 0, omega(prime(n)*prime(n-1) - 1)); \\ Michel Marcus, Apr 30 2019

Formula

a(n) = A001221(A023515(n)).
Showing 1-3 of 3 results.