cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276627 Decimal expansion of K(3-2*sqrt(2)), where K is the complete elliptic integral of the first kind.

Original entry on oeis.org

1, 5, 8, 2, 5, 5, 1, 7, 2, 7, 2, 2, 3, 7, 1, 5, 9, 1, 1, 8, 3, 3, 1, 3, 5, 0, 7, 1, 0, 7, 0, 4, 0, 9, 8, 7, 6, 5, 2, 9, 4, 8, 8, 1, 4, 9, 6, 1, 8, 7, 8, 9, 2, 4, 3, 4, 9, 7, 1, 6, 9, 4, 4, 8, 4, 7, 8, 2, 0, 8, 5, 3, 5, 1, 8, 6, 6, 6, 3, 5, 5, 1, 7, 3, 6, 2, 0, 9, 8, 1, 4, 0, 6, 5, 5, 4, 3, 2, 2, 2, 0, 0, 0, 4, 1
Offset: 1

Views

Author

Benedict W. J. Irwin, Sep 07 2016

Keywords

Comments

The modulus k=3-2*sqrt(2).
K(k_4) in the MathWorld link.

Examples

			1.58255172722371591183313507107040987652948814961878924349716944847...
		

Crossrefs

Cf. A157259 (for 3-2*sqrt(2)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); 2*(2+Sqrt(2))*Pi(R)^(3/2)/Gamma(-1/4)^2; // G. C. Greubel, Oct 08 2018
  • Maple
    evalf(2*(2+sqrt(2))*Pi^(3/2)/GAMMA(-1/4)^2,120); # Muniru A Asiru, Oct 08 2018
  • Mathematica
    RealDigits[N[EllipticK[(3 - 2 Sqrt[2])^2], 105]][[1]]
    RealDigits[2*(2+Sqrt[2])*Pi^(3/2)/Gamma[-1/4]^2, 10, 100][[1]] (* G. C. Greubel, Oct 08 2018 *)
  • PARI
    default(realprecision, 100); 2*(2+sqrt(2))*Pi^(3/2)/gamma(-1/4)^2 \\ G. C. Greubel, Oct 08 2018
    
  • PARI
    ellK(3-sqrt(8)) \\ Charles R Greathouse IV, Feb 05 2025
    

Formula

Equals 2*(2+sqrt(2))*Pi^(3/2)/Gamma(-1/4)^2.
Equals A174968 * A062539 / 2. - R. J. Mathar, Aug 18 2023
Equals A093341 * A201488 [Zucker]. - R. J. Mathar, Jun 24 2024