A276627 Decimal expansion of K(3-2*sqrt(2)), where K is the complete elliptic integral of the first kind.
1, 5, 8, 2, 5, 5, 1, 7, 2, 7, 2, 2, 3, 7, 1, 5, 9, 1, 1, 8, 3, 3, 1, 3, 5, 0, 7, 1, 0, 7, 0, 4, 0, 9, 8, 7, 6, 5, 2, 9, 4, 8, 8, 1, 4, 9, 6, 1, 8, 7, 8, 9, 2, 4, 3, 4, 9, 7, 1, 6, 9, 4, 4, 8, 4, 7, 8, 2, 0, 8, 5, 3, 5, 1, 8, 6, 6, 6, 3, 5, 5, 1, 7, 3, 6, 2, 0, 9, 8, 1, 4, 0, 6, 5, 5, 4, 3, 2, 2, 2, 0, 0, 0, 4, 1
Offset: 1
Examples
1.58255172722371591183313507107040987652948814961878924349716944847...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Elliptic Integral Singular Values
- I. J. Zucker and G. S. Joyce, Special values of the hypergeometric series II, Math. Proc. Camb. Phil. Soc. 131 (2001) 309-319. Table 1 N=4.
Crossrefs
Cf. A157259 (for 3-2*sqrt(2)).
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); 2*(2+Sqrt(2))*Pi(R)^(3/2)/Gamma(-1/4)^2; // G. C. Greubel, Oct 08 2018
-
Maple
evalf(2*(2+sqrt(2))*Pi^(3/2)/GAMMA(-1/4)^2,120); # Muniru A Asiru, Oct 08 2018
-
Mathematica
RealDigits[N[EllipticK[(3 - 2 Sqrt[2])^2], 105]][[1]] RealDigits[2*(2+Sqrt[2])*Pi^(3/2)/Gamma[-1/4]^2, 10, 100][[1]] (* G. C. Greubel, Oct 08 2018 *)
-
PARI
default(realprecision, 100); 2*(2+sqrt(2))*Pi^(3/2)/gamma(-1/4)^2 \\ G. C. Greubel, Oct 08 2018
-
PARI
ellK(3-sqrt(8)) \\ Charles R Greathouse IV, Feb 05 2025
Formula
Equals 2*(2+sqrt(2))*Pi^(3/2)/Gamma(-1/4)^2.
Comments