A276654 a(n) = the smallest number k>1 such that floor(Sum_{p|k} 0.p) = n where p runs through the prime divisors of k.
2, 21, 2905, 281785, 47740490, 9178864590, 8533159052845, 1817562878255985, 1801204812351681135, 787408225243814333670
Offset: 0
Examples
Number 2905 is the smallest number k with floor(Sum_{p|k} 0.p) = 2; set of prime divisors of 2905: {5, 7, 83}; floor(Sum_{p|2905} 0.p) = 0.5 + 0.7 + 0.83 = floor(2.03) = 2.
Programs
-
Magma
A276654:=func
; [A276654(n): n in[0..3]] -
Mathematica
Table[k = 2; While[f = FactorInteger[k][[All, 1]]; Floor[Total[f*10^-IntegerLength[f]]] != n, k++]; k, {n, 0, 3}] (* Robert Price, Sep 20 2019 *)
Extensions
a(4) from Michel Marcus, Sep 11 2016
a(5)-a(9) from Giovanni Resta, Aug 31 2019
Comments