cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A276826 a(n) is the maximal difference between the corresponding terms of sequences defined in the same way as A159559, but with initial terms A001359(n-1)+2 and A001359(n-1) respectively.

Original entry on oeis.org

4, 14, 6, 6, 6, 12, 6, 8, 14, 14, 18, 36, 24, 65, 18, 6, 10, 6, 84, 14, 162, 10, 54, 84, 179, 10, 23, 12, 18, 18, 24, 128, 18, 24, 28, 10, 10, 72, 34, 23, 12, 18, 6, 6, 12, 34, 8, 644, 12, 12, 6, 29, 24, 12, 18, 28, 28, 24, 22, 22, 10, 14, 12, 12, 16, 6, 58
Offset: 2

Views

Author

Vladimir Shevelev, Sep 19 2016

Keywords

Comments

It seems likely that 6 occurs infinitely often.

Examples

			Since A276703(3)=4 (cf. example there), a(2)=4.
		

Crossrefs

Extensions

More terms from Peter J. C. Moses, Sep 19 2016

A277118 For a lesser p of twin primes, let B_k be A159559, but with initial term k; then a(n) is the smallest m such that B_(p+2)(m)-B_p(m)>6, where p = A001359(n-1), or a(n) = 0 if there is no such m.

Original entry on oeis.org

0, 13, 0, 0, 0, 9, 0, 11, 11, 5, 3, 15, 3, 7, 3, 0, 3, 0, 3, 5, 7, 3, 11, 5, 3, 5, 11, 3, 9, 3, 3, 7, 3, 5, 5, 3, 5, 3, 5, 11, 3, 5, 0, 0, 5, 5, 7, 5, 13, 7, 0, 5, 3, 3, 3, 3, 7, 3, 3, 3, 5, 3, 7, 3, 3, 0, 3, 5, 5, 3, 11, 11, 5, 3, 5, 7, 5, 3, 0, 3, 3, 3, 3, 3
Offset: 2

Views

Author

Keywords

Comments

Theorem: a(n) takes only the values 0, 3, 5, 7, 9, 11, 13, 15, and 17.

Crossrefs

Programs

  • PARI
    nextcomposite(n)=if(n<4, return(4)); n=ceil(n); if(isprime(n), n+1, n)
    do(p)=my(a=p,b=p+2,f); for(n=3,17, f=if(isprime(n), nextprime, nextcomposite); a=f(a+1); b=f(b+1); if(b-a > 6, return(n))); 0
    p=2; forprime(q=3,1e3, if(q-p==2, print1(do(p)", ")); p=q) \\ Charles R Greathouse IV, Oct 17 2016

Formula

a(n) = 3 on a subsequence of measure 1. - Charles R Greathouse IV, Oct 17 2016

A276848 For a lesser p of twin primes, let B_(p+2) and B_p be sequences defined as A159559, but with initial terms p+2 and p respectively. The sequence lists p for which all differences B_(p+2)(n)-B_p(n)<=6.

Original entry on oeis.org

3, 11, 17, 29, 59, 227, 269, 1277, 1289, 1607, 2129, 2789, 3527, 3917, 4637, 4787, 5639, 8999, 13679, 14549, 18119, 27737, 36779, 38447, 39227, 44267, 62129, 71327, 75989, 80669, 83219, 88799, 93479, 97367, 99707, 113147, 113159, 115769, 122027, 122387, 124337, 124769, 132749, 150209, 160079
Offset: 1

Views

Author

Vladimir Shevelev, Sep 21 2016

Keywords

Comments

B_(p+2)(n) - B_p(n) < 6 for all n >= 2 if and only if p = 3.
It is astonishing that, although terms a(n) == 7 or 9 (mod 10) occur often, the first terms a(n)==1 (mod 10) are 11, 165701, ... (cf. A022009). This phenomenon is explained in the Shevelev link.

Crossrefs

Programs

  • PARI
    nextcomposite(n)=if(n<4, return(4)); n=ceil(n); if(isprime(n), n+1, n)
    is(n)=if(!isprime(n) || !isprime(n+2), return(0)); my(p=n,q=n+2,k=2,f); while(p!=q && q-p<7, f=if(isprime(k++),nextprime,nextcomposite); p=f(p+1); q=f(q+1)); p==q \\ Charles R Greathouse IV, Sep 21 2016

Extensions

More terms from Peter J. C. Moses, Sep 21 2016

A276831 For a lesser p=A001359(n-1), n>=2, of twin primes, let B_k be the sequence defined as A159559 but with initial term k; a(n) is the smallest m such that B_(p+2)(m)-B_p(m) = max_{t>=2} (B_(p+2)(t)-B_p(t)).

Original entry on oeis.org

5, 17, 11, 5, 3, 17, 3, 11, 11, 5, 31, 107, 13, 333, 17, 5, 3, 3, 281, 5, 997, 3, 487, 659, 5178, 5, 15, 3, 23, 53, 13, 1567, 13, 13, 181, 3, 5, 443, 37, 21, 19, 11, 5, 3, 5, 5, 7, 20786, 13, 7, 5, 21, 3, 5, 17, 61, 31, 23, 7, 3, 11, 5, 11, 5, 3, 3, 157, 37
Offset: 2

Views

Author

Vladimir Shevelev, Sep 20 2016

Keywords

Examples

			Let n=2, p=A001359(1)=3. Then B_3(2)=3, B_3(3)=5, B_3(4)=6, B_3(5)=7, B_3(6)=8, B_3(7)=11, B_3(8)=12, B_3(9)=14, B_3(10)=15, B_3(11)=17;
Further, B_5(2)=5, B_5(3)=7, B_5(4)=8, B_5(5)=11, B_5(6)=12, B_5(7)=13, B_5(8)=14, B_5(9)=15, B_5(10)=16, B_5(11)=17 and, beginning with t=11,
B_3 merges with B_5. So, max(B_5(t)-B_3(t))=4 reaching at t=5 and t=6.
Thus a(2)=min(5,6)=5.
		

Crossrefs

Formula

B_(p+2)(a(n)) - B_p(a(n)) = A276826(n).

Extensions

More terms from Peter J. C. Moses, Sep 20 2016
Showing 1-4 of 4 results.