cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A022009 Initial members of prime septuplets (p, p+2, p+6, p+8, p+12, p+18, p+20).

Original entry on oeis.org

11, 165701, 1068701, 11900501, 15760091, 18504371, 21036131, 25658441, 39431921, 45002591, 67816361, 86818211, 93625991, 124716071, 136261241, 140117051, 154635191, 162189101, 182403491, 186484211, 187029371, 190514321, 198453371
Offset: 1

Views

Author

Keywords

Comments

All terms are congruent to 11 (modulo 210). - Matt C. Anderson, May 26 2015
Also the terms k of A276848 for which k == 1 (mod 10), see the comment in A276848 and A276826. All terms are obviously also congruent to 11 (modulo 30). - Vladimir Shevelev, Sep 21 2016
See A343637 for the least prime septuplets > 10^n, n >= 0. - M. F. Hasler, Aug 04 2021

Crossrefs

Cf. A022010 (septuplets of the second type), A182387, A276826, A276848, A343637 (septuplet following 10^n).

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^8) | forall{p+r: r in [2,6,8,12,18,20] | IsPrime(p+r)}]; // Vincenzo Librandi, Oct 01 2015
  • Mathematica
    Transpose[Select[Partition[Prime[Range[10400000]],7,1],Differences[#] == {2,4,2,4,6,2}&]][[1]] (* Harvey P. Dale, Jul 13 2014 *)
    Select[Prime[Range[2 10^8]], Union[PrimeQ[# + {2, 6, 8, 12, 18, 20}]] == {True} &] (* Vincenzo Librandi, Oct 01 2015 *)
  • PARI
    nextcomposite(n)=if(n<4, return(4)); n=ceil(n); if(isprime(n), n+1, n)
       is(n)=if(n%30!=11 || !isprime(n) || !isprime(n+2), return(0)); my(p=n, q=n+2, k=2, f); while(p!=q && q-p<7, f=if(isprime(k++), nextprime, nextcomposite); p=f(p+1); q=f(q+1)); p==q \\ Charles R Greathouse IV, Sep 30 2016
    
  • PARI
    select( {is_A022009(n)=n%210==11&&!foreach([20,18,12,8,6,2,0],d,isprime(n+d)||return)}, [11+k*210|k<-[0..10^5]]) \\ M. F. Hasler, Aug 04 2021
    
  • Perl
    use ntheory ":all"; say for sieve_prime_cluster(1,1e9, 2,6,8,12,18,20); # Dana Jacobsen, Sep 30 2015
    

Formula

a(n) = 210*A182387(n) + 11. - Hugo Pfoertner, Nov 18 2022

A277118 For a lesser p of twin primes, let B_k be A159559, but with initial term k; then a(n) is the smallest m such that B_(p+2)(m)-B_p(m)>6, where p = A001359(n-1), or a(n) = 0 if there is no such m.

Original entry on oeis.org

0, 13, 0, 0, 0, 9, 0, 11, 11, 5, 3, 15, 3, 7, 3, 0, 3, 0, 3, 5, 7, 3, 11, 5, 3, 5, 11, 3, 9, 3, 3, 7, 3, 5, 5, 3, 5, 3, 5, 11, 3, 5, 0, 0, 5, 5, 7, 5, 13, 7, 0, 5, 3, 3, 3, 3, 7, 3, 3, 3, 5, 3, 7, 3, 3, 0, 3, 5, 5, 3, 11, 11, 5, 3, 5, 7, 5, 3, 0, 3, 3, 3, 3, 3
Offset: 2

Views

Author

Keywords

Comments

Theorem: a(n) takes only the values 0, 3, 5, 7, 9, 11, 13, 15, and 17.

Crossrefs

Programs

  • PARI
    nextcomposite(n)=if(n<4, return(4)); n=ceil(n); if(isprime(n), n+1, n)
    do(p)=my(a=p,b=p+2,f); for(n=3,17, f=if(isprime(n), nextprime, nextcomposite); a=f(a+1); b=f(b+1); if(b-a > 6, return(n))); 0
    p=2; forprime(q=3,1e3, if(q-p==2, print1(do(p)", ")); p=q) \\ Charles R Greathouse IV, Oct 17 2016

Formula

a(n) = 3 on a subsequence of measure 1. - Charles R Greathouse IV, Oct 17 2016

A276848 For a lesser p of twin primes, let B_(p+2) and B_p be sequences defined as A159559, but with initial terms p+2 and p respectively. The sequence lists p for which all differences B_(p+2)(n)-B_p(n)<=6.

Original entry on oeis.org

3, 11, 17, 29, 59, 227, 269, 1277, 1289, 1607, 2129, 2789, 3527, 3917, 4637, 4787, 5639, 8999, 13679, 14549, 18119, 27737, 36779, 38447, 39227, 44267, 62129, 71327, 75989, 80669, 83219, 88799, 93479, 97367, 99707, 113147, 113159, 115769, 122027, 122387, 124337, 124769, 132749, 150209, 160079
Offset: 1

Views

Author

Vladimir Shevelev, Sep 21 2016

Keywords

Comments

B_(p+2)(n) - B_p(n) < 6 for all n >= 2 if and only if p = 3.
It is astonishing that, although terms a(n) == 7 or 9 (mod 10) occur often, the first terms a(n)==1 (mod 10) are 11, 165701, ... (cf. A022009). This phenomenon is explained in the Shevelev link.

Crossrefs

Programs

  • PARI
    nextcomposite(n)=if(n<4, return(4)); n=ceil(n); if(isprime(n), n+1, n)
    is(n)=if(!isprime(n) || !isprime(n+2), return(0)); my(p=n,q=n+2,k=2,f); while(p!=q && q-p<7, f=if(isprime(k++),nextprime,nextcomposite); p=f(p+1); q=f(q+1)); p==q \\ Charles R Greathouse IV, Sep 21 2016

Extensions

More terms from Peter J. C. Moses, Sep 21 2016

A276831 For a lesser p=A001359(n-1), n>=2, of twin primes, let B_k be the sequence defined as A159559 but with initial term k; a(n) is the smallest m such that B_(p+2)(m)-B_p(m) = max_{t>=2} (B_(p+2)(t)-B_p(t)).

Original entry on oeis.org

5, 17, 11, 5, 3, 17, 3, 11, 11, 5, 31, 107, 13, 333, 17, 5, 3, 3, 281, 5, 997, 3, 487, 659, 5178, 5, 15, 3, 23, 53, 13, 1567, 13, 13, 181, 3, 5, 443, 37, 21, 19, 11, 5, 3, 5, 5, 7, 20786, 13, 7, 5, 21, 3, 5, 17, 61, 31, 23, 7, 3, 11, 5, 11, 5, 3, 3, 157, 37
Offset: 2

Views

Author

Vladimir Shevelev, Sep 20 2016

Keywords

Examples

			Let n=2, p=A001359(1)=3. Then B_3(2)=3, B_3(3)=5, B_3(4)=6, B_3(5)=7, B_3(6)=8, B_3(7)=11, B_3(8)=12, B_3(9)=14, B_3(10)=15, B_3(11)=17;
Further, B_5(2)=5, B_5(3)=7, B_5(4)=8, B_5(5)=11, B_5(6)=12, B_5(7)=13, B_5(8)=14, B_5(9)=15, B_5(10)=16, B_5(11)=17 and, beginning with t=11,
B_3 merges with B_5. So, max(B_5(t)-B_3(t))=4 reaching at t=5 and t=6.
Thus a(2)=min(5,6)=5.
		

Crossrefs

Formula

B_(p+2)(a(n)) - B_p(a(n)) = A276826(n).

Extensions

More terms from Peter J. C. Moses, Sep 20 2016
Showing 1-4 of 4 results.