A276712 Decimal expansion of zeta(3)/8.
1, 5, 0, 2, 5, 7, 1, 1, 2, 8, 9, 4, 9, 4, 9, 2, 8, 5, 6, 7, 4, 9, 6, 7, 2, 7, 0, 1, 8, 8, 9, 3, 1, 2, 4, 8, 8, 4, 5, 6, 2, 3, 2, 8, 6, 5, 4, 2, 5, 6, 2, 3, 6, 0, 2, 2, 4, 0, 3, 3, 9, 4, 4, 4, 1, 7, 7, 2, 9, 7, 7, 5, 7, 2, 3, 2, 8, 9
Offset: 0
Examples
0.150257112894949285674967270188...
References
- James Dodson, The Mathematical Repository Containing Analytical Solutions of Five Hundred Questions: Mostly Selected from Scarce and Valuable Authors, (1748), page 375.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- R. Barbieri, J. A. Mignaco and E. Remiddi, Electron form factors up to fourth order. I., Il Nuovo Cim. 11A (4) (1972) 824-864, table II (5)
- Nick Lord, Problen 89.D, Problem Corner, The Mathematical Gazette, Vol. 89, No. 514 (2005), pp. 115-119; Solution, ibid., Vol. 89, No. 516 (2005), pp. 539-542.
- Michael Penn, The solution is an important constant, YouTube video, 2021.
Programs
-
Magma
SetDefaultRealField(RealField(120)); L:=RiemannZeta(); Evaluate(L,3)/8; // G. C. Greubel, Nov 24 2021
-
Mathematica
RealDigits[(Zeta[3])/8, 10, 100][[1]]
-
PARI
zeta(3)/8 \\ Michel Marcus, Sep 16 2016
-
Sage
(zeta(3)/8).n(100)
Formula
Equals Sum_{n>=1} 1/(2n)^3 = 1/8 + 1/64 + 1/216 + 1/512 + ...
Equals A002117/8.
zeta(3)/8 + A233091 = Sum_{n>=1} 1/(2n+1)^3 + Sum_{n>=1} 1/(2n)^3 = zeta(3).
Equals Sum_{k>=1} (-1)^(k+1) * H(k)/(k+1)^2, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Jul 22 2020
Equals Integral_{x=0..Pi/4} log(sin(x))*log(cos(x))/(sin(x)*cos(x)) dx (Lord, 2005). - Amiram Eldar, Jun 23 2023
Equals -integral_{x=0..1} log(x) log(1+x)/(1+x). [Barbieri] - R. J. Mathar, Jun 07 2024