cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276712 Decimal expansion of zeta(3)/8.

Original entry on oeis.org

1, 5, 0, 2, 5, 7, 1, 1, 2, 8, 9, 4, 9, 4, 9, 2, 8, 5, 6, 7, 4, 9, 6, 7, 2, 7, 0, 1, 8, 8, 9, 3, 1, 2, 4, 8, 8, 4, 5, 6, 2, 3, 2, 8, 6, 5, 4, 2, 5, 6, 2, 3, 6, 0, 2, 2, 4, 0, 3, 3, 9, 4, 4, 4, 1, 7, 7, 2, 9, 7, 7, 5, 7, 2, 3, 2, 8, 9
Offset: 0

Views

Author

Terry D. Grant, Sep 15 2016

Keywords

Examples

			0.150257112894949285674967270188...
		

References

  • James Dodson, The Mathematical Repository Containing Analytical Solutions of Five Hundred Questions: Mostly Selected from Scarce and Valuable Authors, (1748), page 375.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(120)); L:=RiemannZeta();  Evaluate(L,3)/8; // G. C. Greubel, Nov 24 2021
  • Mathematica
    RealDigits[(Zeta[3])/8, 10, 100][[1]]
  • PARI
    zeta(3)/8 \\ Michel Marcus, Sep 16 2016
    
  • Sage
    (zeta(3)/8).n(100)
    

Formula

Equals Sum_{n>=1} 1/(2n)^3 = 1/8 + 1/64 + 1/216 + 1/512 + ...
Equals A002117/8.
zeta(3)/8 + A233091 = Sum_{n>=1} 1/(2n+1)^3 + Sum_{n>=1} 1/(2n)^3 = zeta(3).
Equals Sum_{k>=1} (-1)^(k+1) * H(k)/(k+1)^2, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Jul 22 2020
Equals Integral_{x=0..Pi/4} log(sin(x))*log(cos(x))/(sin(x)*cos(x)) dx (Lord, 2005). - Amiram Eldar, Jun 23 2023
Equals -integral_{x=0..1} log(x) log(1+x)/(1+x). [Barbieri] - R. J. Mathar, Jun 07 2024