cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A276719 Number A(n,k) of set partitions of [n] such that for each block b the smallest integer interval containing b has at most k elements; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 5, 5, 1, 0, 1, 1, 2, 5, 10, 8, 1, 0, 1, 1, 2, 5, 15, 20, 13, 1, 0, 1, 1, 2, 5, 15, 37, 42, 21, 1, 0, 1, 1, 2, 5, 15, 52, 87, 87, 34, 1, 0, 1, 1, 2, 5, 15, 52, 151, 208, 179, 55, 1, 0, 1, 1, 2, 5, 15, 52, 203, 409, 515, 370, 89, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 16 2016

Keywords

Comments

The sequence of column k satisfies a linear recurrence with constant coefficients of order 2^(k-1) for k>0.

Examples

			A(3,2) = 3: 12|3, 1|23, 1|2|3.
A(4,3) = 10: 123|4, 12|34, 12|3|4, 13|24, 13|2|4, 1|234, 1|23|4, 1|24|3, 1|2|34, 1|2|3|4.
A(5,4) = 37: 1234|5, 123|45, 123|4|5, 124|35, 124|3|5, 12|345, 12|34|5, 12|35|4, 12|3|45, 12|3|4|5, 134|25, 134|2|5, 13|245, 13|24|5, 13|25|4, 13|2|45, 13|2|4|5, 14|235, 14|23|5, 1|2345, 1|234|5, 1|235|4, 1|23|45, 1|23|4|5, 14|25|3, 14|2|35, 14|2|3|5, 1|245|3, 1|24|35, 1|24|3|5, 1|25|34, 1|2|345, 1|2|34|5, 1|25|3|4, 1|2|35|4, 1|2|3|45, 1|2|3|4|5.
Square array A(n,k) begins:
  1, 1,  1,   1,   1,    1,    1,    1,    1, ...
  0, 1,  1,   1,   1,    1,    1,    1,    1, ...
  0, 1,  2,   2,   2,    2,    2,    2,    2, ...
  0, 1,  3,   5,   5,    5,    5,    5,    5, ...
  0, 1,  5,  10,  15,   15,   15,   15,   15, ...
  0, 1,  8,  20,  37,   52,   52,   52,   52, ...
  0, 1, 13,  42,  87,  151,  203,  203,  203, ...
  0, 1, 21,  87, 208,  409,  674,  877,  877, ...
  0, 1, 34, 179, 515, 1100, 2066, 3263, 4140, ...
		

Crossrefs

Main diagonal gives A000110.
A(n+1,n) gives A005493(n-1) for n>0.

Programs

  • Maple
    b:= proc(n, m, l) option remember; `if`(n=0, 1,
          add(b(n-1, max(m, j), [subsop(1=NULL, l)[],
          `if`(j<=m, 0, j)]), j={l[], m+1} minus {0}))
        end:
    A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, b(n, 0, [0$(k-1)]))):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, m_, l_List] := b[n, m, l] = If[n == 0, 1, Sum[b[n - 1, Max[m, j], Append[ReplacePart[l, 1 -> Nothing], If[j <= m, 0, j]]], {j, Append[l, m + 1] ~Complement~ {0}}]]; A[n_, k_] := If[n == 0, 1, If[k < 2, k, b[n, 0, Array[0&, k-1]]]]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 06 2017, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{i=0..k} A276727(n,i).

A276838 Number of permutations of [n] such that for each cycle c the smallest integer interval containing all elements of c has at most four elements.

Original entry on oeis.org

1, 1, 2, 6, 24, 60, 150, 399, 1145, 3132, 8420, 22716, 62128, 169536, 460885, 1251777, 3406238, 9272354, 25229036, 68622196, 186682470, 507925571, 1381929921, 3759616968, 10228269080, 27827267544, 75707898304, 205971928848, 560368255081, 1524544463441
Offset: 0

Views

Author

Alois P. Heinz, Sep 20 2016

Keywords

Comments

a(n) is the number of permutations of length n avoiding the partially ordered pattern (POP) {1>5} of length 5. That is, the number of length n permutations having no subsequences of length 5 in which the first element is larger than the fifth element. - Sergey Kitaev, Dec 11 2020

Crossrefs

Column k=4 of A276837.
Cf. A276720.

Programs

  • Mathematica
    CoefficientList[Series[-(x - 1) (x + 1)/(x^8 + 5 x^7 + 2 x^6 - 8 x^5 - 12 x^4 - 2 x^3 - 2 x^2 - x + 1), {x, 0, 29}], x] (* Michael De Vlieger, Oct 14 2017 *)

Formula

G.f.: -(x-1)*(x+1)/(x^8+5*x^7+2*x^6-8*x^5-12*x^4-2*x^3-2*x^2-x+1).

A276894 Number of ordered set partitions of [n] such that for each block b the smallest integer interval containing b has at most four elements.

Original entry on oeis.org

1, 1, 3, 13, 75, 466, 3272, 26032, 232820, 2304600, 25003176, 295139034, 3767545662, 51729553992, 760326663792, 11913105530016, 198246166468224, 3492246172917240, 64928731038925800, 1270685662509505560, 26112819120798942120, 562241528313838756560
Offset: 0

Views

Author

Alois P. Heinz, Sep 21 2016

Keywords

Crossrefs

Column k=4 of A276890.
Cf. A276720.

Programs

  • Mathematica
    b[n_, m_, l_List] := b[n, m, l] = If[n == 0, m!, Sum[b[n - 1, Max[m, j], Append[ReplacePart[l, 1 -> Nothing], If[j <= m, 0, j]]], {j, Append[l, m + 1] ~Complement~ {0}}]]; a[n_] := b[n, 0, {0, 0, 0}]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jul 18 2017, after Alois P. Heinz *)

Formula

a(n) ~ exp(3) * n!. - Vaclav Kotesovec, Sep 22 2016

A320554 Number of set partitions of [n] such that for each block b the smallest integer interval containing b has at most four elements and for at least one block c the smallest integer interval containing c has exactly four elements.

Original entry on oeis.org

5, 17, 45, 121, 336, 901, 2347, 6014, 15314, 38766, 97531, 244054, 608339, 1511919, 3748379, 9273353, 22901665, 56477538, 139114445, 342325451, 841676972, 2067997764, 5078117000, 12463618356, 30577931115, 74993361731, 183870516407, 450708620604, 1104563863868
Offset: 4

Views

Author

Alois P. Heinz, Oct 15 2018

Keywords

Examples

			a(5) = 17: 1234|5, 124|35, 124|3|5, 134|25, 134|2|5, 13|245, 13|25|4, 14|235, 14|23|5, 1|2345, 1|235|4, 14|25|3, 14|2|35, 14|2|3|5, 1|245|3, 1|25|34, 1|25|3|4.
		

Crossrefs

Column k=4 of A276727.

Programs

  • Maple
    b:= proc(n, m, l) option remember; `if`(n=0, 1,
          add(b(n-1, max(m, j), [subsop(1=NULL, l)[],
          `if`(j<=m, 0, j)]), j={l[], m+1} minus {0}))
        end:
    A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, b(n, 0, [0$(k-1)]))):
    a:= n-> (k-> A(n, k) -`if`(k=0, 0, A(n, k-1)))(4):
    seq(a(n), n=4..35);
  • Mathematica
    b[n_, m_, l_List] := b[n, m, l] = If[n == 0, 1, Sum[b[n - 1, Max[m, j], Append[ReplacePart[l, 1 -> Nothing], If[j <= m, 0, j]]], {j, Append[l, m + 1]~Complement~{0}}]];
    A[n_, k_] := If[n == 0, 1, If[k < 2, k, b[n, 0, Array[0 &, k - 1]]]];
    a[n_] := With[{k = 4}, A[n, k] - If[k == 0, 0, A[n, k - 1]]];
    a /@ Range[4, 35] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)

Formula

G.f.: -(-x^8 -3*x^7 +x^6 +7*x^5 +5*x^4) / (x^12 +5*x^11 +7*x^10 -x^9 -13*x^8 -19*x^7 -14*x^6 -6*x^5 +x^4 +2*x^2 +2*x-1).
a(n) = A276720(n) - A129847(n).

A320555 Number of set partitions of [n] such that for each block b the smallest integer interval containing b has at most five elements and for at least one block c the smallest integer interval containing c has exactly five elements.

Original entry on oeis.org

15, 64, 201, 585, 1741, 5375, 16355, 48601, 141921, 410425, 1182828, 3398411, 9728692, 27745449, 78861484, 223573925, 632578393, 1786856056, 5039984789, 14197033194, 39945491361, 112282665839, 315352029653, 885048266680, 2482371076351, 6958712870273
Offset: 5

Views

Author

Alois P. Heinz, Oct 15 2018

Keywords

Crossrefs

Column k=5 of A276727.

Programs

  • Maple
    b:= proc(n, m, l) option remember; `if`(n=0, 1,
          add(b(n-1, max(m, j), [subsop(1=NULL, l)[],
          `if`(j<=m, 0, j)]), j={l[], m+1} minus {0}))
        end:
    A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, b(n, 0, [0$(k-1)]))):
    a:= n-> (k-> A(n, k) -`if`(k=0, 0, A(n, k-1)))(5):
    seq(a(n), n=5..50);
  • Mathematica
    b[n_, m_, l_List] := b[n, m, l] = If[n == 0, 1, Sum[b[n - 1, Max[m, j], Append[ReplacePart[l, 1 -> Nothing], If[j <= m, 0, j]]], {j, Append[l, m + 1]~Complement~{0}}]];
    A[n_, k_] := If[n == 0, 1, If[k < 2, k, b[n, 0, Array[0 &, k - 1]]]];
    a[n_] := With[{k = 5}, A[n, k] - If[k == 0, 0, A[n, k - 1]]];
    a /@ Range[5, 35] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)

Formula

a(n) = A276721(n) - A276720(n).
Showing 1-5 of 5 results.