A276722 Number of set partitions of [n] such that for each block b the smallest integer interval containing b has at most six elements.
1, 1, 2, 5, 15, 52, 203, 674, 2066, 6184, 18587, 56867, 178317, 561319, 1760125, 5489888, 17057701, 52931331, 164466672, 511758485, 1593612234, 4962950389, 15451453190, 48088784307, 149640967002, 465653853729, 1449146745582, 4510183339086, 14037494547193
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Partition of a set
Formula
G.f.: -(x^22 -x^19 -15*x^18 +7*x^17 +18*x^16 +11*x^14 -22*x^13 -26*x^12 -10*x^11 +2*x^10 -28*x^9 +3*x^8 +16*x^7 +14*x^6 -5*x^5 +5*x^4 +5*x^3 +2*x^2 -1) / (x^32 +5*x^31 +x^30 -5*x^29 -6*x^28 -111*x^27 -210*x^26 +52*x^25 +263*x^24 +85*x^23 -346*x^22 -882*x^21 -401*x^20 +584*x^19 +382*x^18 -1058*x^17 -1319*x^16 -200*x^15 +250*x^14 +382*x^13 +589*x^12 +716*x^11 +346*x^10 +49*x^9 -137*x^8 -146*x^7 -84*x^6 -3*x^5 -4*x^4 -5*x^3 -3*x^2 -x +1).