A276733 Composite numbers n such that 2^lpf(n) == 2 (mod n), where lpf(n) = A020639(n).
341, 1247, 1387, 2047, 2701, 3277, 3683, 4033, 4369, 4681, 5461, 5963, 7957, 8321, 9017, 9211, 10261, 13747, 14351, 14491, 15709, 17593, 18721, 19951, 20191, 23377, 24929, 25351, 29041, 31417, 31609, 31621, 33227, 35333, 37901, 42799, 45761, 46513, 49141, 49601, 49981
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Programs
-
Maple
filter:= n -> not isprime(n) and 2 &^ min(numtheory:-factorset(n)) - 2 mod n = 0: select(filter, [seq(i,i=3..100000,2)]); # Robert Israel, Sep 16 2016
-
PARI
lista(nn) = forcomposite(n=2, nn, if (Mod(2, n)^factor(n)[1,1] == Mod(2, n), print1(n, ", "));); \\ Michel Marcus, Sep 16 2016
Extensions
More terms from Michel Marcus, Sep 16 2016
Comments