A276734 Numbers n such that the number of divisors of n equals the integer part of the geometric mean of the divisors of n.
1, 5, 7, 9, 21, 22, 44, 45, 66, 70, 78, 112, 150, 156, 160, 264, 270, 280, 432, 600, 1080, 1680
Offset: 1
Examples
a(10) = 70, because 70 has 8 divisors {1, 2, 5, 7, 10, 14, 35, 70} and floor((1*2*5*7*10*14*35*70)^(1/8)) = floor(sqrt(70)) = 8; equivalently, we have 8 squares {1, 4, 9, 16, 25, 36, 49, 64} <= 70.
Links
- Ilya Gutkovskiy, Illustration of dynamics of floor(sqrt(n)) - sigma_0(n)
- L. Nicolas and G. Robin, Majorations explicites pour le nombre de diviseurs de N, Canadian Mathematical Bulletin 26 (1983), pp. 485-492.
Programs
-
Mathematica
Select[Range[10000], DivisorSigma[0, #1] == Floor[Sqrt[#1]] & ]
Comments