A276770 a(n) is the number of runs of an algorithm. Set b_0 = n, if prime, stop; else, set c_0 = largest divisor of n (!=n); set b_1 = c_0 + b_0/c_0. Run with b_1.
0, 1, 0, 2, 2, 1, 0, 3, 0, 3, 3, 2, 0, 1, 0, 4, 2, 1, 0, 4, 2, 4, 4, 3, 0, 1, 0, 2, 4, 1, 4, 5, 0, 3, 3, 2, 0, 1, 0, 5, 2, 3, 0, 5, 4, 5, 5, 4, 0, 1, 3, 2, 2, 1, 0, 3, 0, 5, 5, 2, 2, 5, 0, 6, 5, 1, 0, 4, 0, 4, 4, 3, 2, 1, 0, 2, 2, 1, 0, 6, 2, 3, 3, 4, 0, 1, 5, 6, 2, 5, 5, 6, 0, 6, 6, 5, 0, 1, 0, 2, 4
Offset: 5
Keywords
Examples
For n=14: b_0 = 14, not prime. c_0 = 7. b_1 = 7 + 2 = 9. 9 is not prime. In short: 14 -> {7,2} -> 9 -> {3,3} -> 6 -> {3,2} -> 5. Number of runs a(14) = 3.
Links
- Yuriy Sibirmovsky, Table of n, a(n) for n = 5..1000
- Yuriy Sibirmovsky, Plot of sum_{k=5..n} a(k) for n = 5..20000
Programs
-
Mathematica
Nm=100; a=Table[0,{n,1,Nm}]; Do[b0=n; j=0; While[PrimeQ[b0]==False,c=Reverse[Divisors[b0]]; b1=c[[2]]+b0/c[[2]]; b0=b1;j++]; a[[n]]=j,{n,5,Nm}]; Table[a[[k]],{k,5,Nm}]
-
PARI
stop(n) = (n<=1) || isprime(n); a(n) = {b = n; nb = 0; while (! stop(b), d = divisors(b); c = d[#d-1]; b = c + b/c; nb++;); nb;} \\ Michel Marcus, Sep 19 2016
Comments