A276810 Numbers n such that A045876(n) has distinct decimal digits.
1, 2, 3, 4, 5, 6, 7, 8, 9, 39, 48, 49, 57, 58, 59, 67, 68, 69, 75, 76, 78, 79, 84, 85, 86, 87, 89, 93, 94, 95, 96, 97, 98, 149, 158, 167, 176, 185, 194, 199, 239, 248, 257, 275, 284, 289, 293, 298, 329, 347, 356, 365, 374, 379, 388, 392, 397, 419, 428, 437, 469, 473, 478, 482
Offset: 1
Examples
289 is a term because 289+298+829+892+928+982 = 4218 has distinct decimal digits.
Programs
-
Mathematica
Select[Range[10^3], Max@ DigitCount@ Total@ Map[FromDigits, Permutations@ IntegerDigits@ #] == 1 &] (* Michael De Vlieger, Sep 19 2016 *)
-
PARI
A047726(n) = n=eval(Vec(Str(n))); (#n)!/prod(i=0, 9, sum(j=1, #n, n[j]==i)!); A055642(n) = #Str(n); A007953(n) = sumdigits(n); A045876(n) = ((10^A055642(n)-1)/9)*(A047726(n)*A007953(n)/A055642(n)); isA010784(n) = my(v=vecsort(digits(n))); v==vecsort(v, , 8); is(n) = isA010784(A045876(n));
Extensions
Clarified comment. - Harvey P. Dale, Apr 30 2022
Comments