A276845 Numbers k such that (25*10^k - 73) / 3 is prime.
1, 2, 5, 6, 40, 47, 49, 58, 67, 142, 170, 173, 232, 530, 539, 559, 1651, 1858, 2695, 6257, 6714, 8854, 15066, 15091, 16890, 51366, 85249, 135906
Offset: 1
Examples
2 is in this sequence because (25*10^2 - 73) / 3 = 809 is prime. Initial terms and associated primes: a(1) = 1, 59; a(2) = 2, 809; a(3) = 5, 833309; a(4) = 6, 8333309; a(5) = 40, 83333333333333333333333333333333333333309, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 83w09.
Programs
-
Magma
[n: n in [0..500] | IsPrime((25*10^n - 73) div 3)]; // Vincenzo Librandi, Sep 22 2016
-
Mathematica
Select[Range[0, 100000], PrimeQ[(25*10^# - 73) / 3] &]
-
PARI
is(n) = ispseudoprime((25*10^n - 73) / 3); \\ Altug Alkan, Sep 20 2016
Extensions
a(28) from Robert Price, Sep 22 2019
Comments