A276846 Numbers k such that (4*10^k + 143) / 3 is prime.
1, 2, 3, 4, 7, 9, 15, 21, 22, 44, 49, 53, 63, 127, 145, 393, 856, 1006, 1883, 2263, 5684, 13324, 14291, 27435, 38897, 114076
Offset: 1
Examples
2 is in this sequence because (4*10^2 + 143) / 3 = 1381 is prime. Initial terms and associated primes: a(1) = 1, 61; a(2) = 2, 181; a(3) = 3, 1381; a(4) = 4, 13381; a(5) = 7, 13333381, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 13w81.
Programs
-
Magma
[n: n in [0..500] | IsPrime((4*10^n+143) div 3)]; // Vincenzo Librandi, Sep 22 2016
-
Mathematica
Select[Range[0, 100000], PrimeQ[(4*10^# + 143) / 3] &]
-
PARI
is(n) = ispseudoprime((4*10^n + 143) / 3); \\ Altug Alkan, Sep 20 2016
Extensions
a(26) from Robert Price, Mar 05 2018
Comments